Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula

Frédéric Faure[1]

  • [1] Institut Fourier 100 rue des Maths, BP74 38402 St Martin d’Heres (France)

Annales de l’institut Fourier (2007)

  • Volume: 57, Issue: 7, page 2525-2599
  • ISSN: 0373-0956

Abstract

top
We consider a nonlinear area preserving Anosov map M on the torus phase space, which is the simplest example of a fully chaotic dynamics. We are interested in the quantum dynamics for long time, generated by the unitary quantum propagator M ^ . The usual semi-classical Trace formula expresses T r M ^ t for finite time t , in the limit 0 , in terms of periodic orbits of M of period t . Recent work reach time t t E / 6 where t E = log ( 1 / ) / λ is the Ehrenfest time, and λ is the Lyapounov coefficient. Using a semi-classical normal form description of the dynamics uniformly over phase space, we show how to extend the trace formula for longer time of the form t = C . t E where C is any constant, with an arbitrary small error.

How to cite

top

Faure, Frédéric. "Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula." Annales de l’institut Fourier 57.7 (2007): 2525-2599. <http://eudml.org/doc/10305>.

@article{Faure2007,
abstract = {We consider a nonlinear area preserving Anosov map $M$ on the torus phase space, which is the simplest example of a fully chaotic dynamics. We are interested in the quantum dynamics for long time, generated by the unitary quantum propagator $\hat\{M\}$. The usual semi-classical Trace formula expresses $\mbox \{Tr\}\left(\hat\{M\}^\{t\}\right)$ for finite time $t$, in the limit $\hbar\rightarrow 0$, in terms of periodic orbits of $M$ of period $ t$. Recent work reach time $t \ll t_\{E\}/6$ where $t_\{E\} = \log (1/\hbar)/\lambda $ is the Ehrenfest time, and $\lambda $ is the Lyapounov coefficient. Using a semi-classical normal form description of the dynamics uniformly over phase space, we show how to extend the trace formula for longer time of the form $t = C.t_\{E\}$ where $C$ is any constant, with an arbitrary small error.},
affiliation = {Institut Fourier 100 rue des Maths, BP74 38402 St Martin d’Heres (France)},
author = {Faure, Frédéric},
journal = {Annales de l’institut Fourier},
keywords = {Quantum chaos; hyperbolic map; semiclassical trace formula; Ehrenfest time; quantum chaos},
language = {eng},
number = {7},
pages = {2525-2599},
publisher = {Association des Annales de l’institut Fourier},
title = {Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula},
url = {http://eudml.org/doc/10305},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Faure, Frédéric
TI - Semi-classical formula beyond the Ehrenfest time in quantum chaos. (I) Trace formula
JO - Annales de l’institut Fourier
PY - 2007
PB - Association des Annales de l’institut Fourier
VL - 57
IS - 7
SP - 2525
EP - 2599
AB - We consider a nonlinear area preserving Anosov map $M$ on the torus phase space, which is the simplest example of a fully chaotic dynamics. We are interested in the quantum dynamics for long time, generated by the unitary quantum propagator $\hat{M}$. The usual semi-classical Trace formula expresses $\mbox {Tr}\left(\hat{M}^{t}\right)$ for finite time $t$, in the limit $\hbar\rightarrow 0$, in terms of periodic orbits of $M$ of period $ t$. Recent work reach time $t \ll t_{E}/6$ where $t_{E} = \log (1/\hbar)/\lambda $ is the Ehrenfest time, and $\lambda $ is the Lyapounov coefficient. Using a semi-classical normal form description of the dynamics uniformly over phase space, we show how to extend the trace formula for longer time of the form $t = C.t_{E}$ where $C$ is any constant, with an arbitrary small error.
LA - eng
KW - Quantum chaos; hyperbolic map; semiclassical trace formula; Ehrenfest time; quantum chaos
UR - http://eudml.org/doc/10305
ER -

References

top
  1. N. Anantharaman, Entropy and the localization of eigenfunctions, (2004) Zbl1175.35036
  2. N. Anantharaman, S. Nonnenmacher, Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold, (2006) Zbl1145.81033
  3. V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, (1988), Springer Verlag Zbl0507.34003MR947141
  4. D. Bambusi, S. Graffi, T. Paul, Long time semiclassical approximation of quantum flows: A proof of the Ehrenfest time, Asymptot. Anal. 21 (1999), 149-160 Zbl0934.35142MR1723551
  5. O. Bohigas, Random matrix theories and chaotic dynamics, Chaos and Quantum Physics, Proceedings of the Les Houches Summer School (1989) 45 (1991), 87-199 MR1188418
  6. O. Bohigas, M. J. Giannoni, C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984), 1-4 Zbl1119.81326MR730191
  7. F. Bonechi, S. DeBièvre, Exponential mixing and ln(h) timescales in quantized hyperbolic maps on the torus, Comm. Math. Phys. 211 (2000), 659-686 Zbl1053.81032MR1773813
  8. J. M. Bouclet, S. DeBièvre, Long time propagation and control on scarring for perturbated quantized hyperbolic toral automorphisms, Annales Henri Poincaré 6 (2005), 885-913 Zbl1088.81049MR2219861
  9. A. Bouzouina, D. Robert, Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J. 111 (2002), 223-252 Zbl1069.35061MR1882134
  10. M. Cargo, A. Gracia-Saz, R. G. Littlejohn, M. W. Reinsch, P. M. Rios, Quantum normal forms, moyal star product and bohr-sommerfeld approximation, J. Phys. A: Math. Gen. 38 (2005), 1997-2004 Zbl1073.81056MR2124376
  11. Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien. (Ergodicity and eigenfunctions of the Laplacian), Commun. Math. Phys. 102 (1985), 497-502 Zbl0592.58050MR818831
  12. Y. Colin de Verdière, B. Parisse, Équilibre instable en régime semi-classique - I. Concentration microlocale, Communications in Partial Differential Equations 19 (1994), 1535-1563 Zbl0819.35116MR1294470
  13. Y. Colin de Verdière, B. Parisse, Équilibre instable en régime semi-classique - II. Conditions de Bohr-Sommerfeld, Annales de l’Institut Henri Poincaré- Physique Théorique 61 (1994), 347-367 Zbl0845.35076
  14. Y. Colin de Verdière, B. Parisse, Singular bohr-sommerfeld rules, Commun. Math. Phys 205 (1999), 459-500 Zbl1157.81310MR1712567
  15. M. Combescure, J. Ralston, D. Robert, A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition, Commun. Math. Phys. 202 (1999), 463-480 Zbl0939.58031MR1690026
  16. M. Combescure, D. Robert, Semiclassical spreading of quantum wave packets and applications near unstable fixed points of the classical flow, Asymptotic Anal. 14 (1997), 377-404 Zbl0894.35026MR1461126
  17. S. De Bièvre, Recent results on quantum map eigenstates, Mathematical physics of quantum mechanics 690 (2006), 367-381, Springer, Berlin Zbl1167.81388MR2234923
  18. Stephan De Bièvre, Quantum chaos: a brief first visit, Second Summer School in Analysis and Mathematical Physics (Cuernavaca, 2000) 289 (2001), 161-218, Amer. Math. Soc. Zbl1009.81020MR1864542
  19. D. DeLatte, Nonstationnary normal forms and cocycle invariants, Random and Computational dynamics 1 (1992), 229-259 Zbl0778.58058MR1186375
  20. D. DeLatte, On normal forms in hamiltonian dynamics, a new approach to some convergence questions, Ergod. Th. and Dynam. Sys. 15 (1995), 49-66 Zbl0820.58052MR1314968
  21. M. Dimassi, J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, 268 (1999), Cambridge University Press Zbl0926.35002MR1735654
  22. B. Eckhardt, S. Fishman, J. Keating, O. Agam, J. Main, K. Müller, Approach to ergodicity in quantum wave functions, Phys. Rev. E 52 (1995), 5893-5903 
  23. L. Evans, M. Zworski, Lectures on semiclassical analysis, (2003) 
  24. F. Faure, Semiclassical formula beyond the ehrenfest time in quantum chaos. (II) propagator formula, (2006) 
  25. F. Faure, Prequantum chaos: Resonances of the prequantum cat map, Journal of Modern Dynamics 1 (2007), 255-285 Zbl1145.81034MR2285729
  26. F. Faure, S. Nonnenmacher, On the maximal scarring for quantum cat map eigenstates, Communications in Mathematical Physics 245 (2004), 201-214 Zbl1071.81044MR2036373
  27. F. Faure, S. Nonnenmacher, S. DeBièvre, Scarred eigenstates for quantum cat maps of minimal periods, Communications in Mathematical Physics 239 (2003), 449-492 Zbl1033.81024MR2000926
  28. G. B. Folland, Harmonic Analysis in phase space, (1989), Princeton University Press Zbl0682.43001MR983366
  29. M. J. Giannoni, A. Voros, J. Zinn-Justin, Chaos and Quantum Physics, (1991), North-Holland MR1188415
  30. I. Gohberg, S. Goldberg, N. Krupnik, Traces and Determinants of Linear Operators, (2000), Birkhauser Zbl0946.47013MR1744872
  31. A. Gracia-Saz, The symbol of a function of a pseudo-differential operator., Annales de l’Institut Fourier 55 (2005), 2257-2284 Zbl1091.53062
  32. V. Guillemin, Wave-trace invariants, Duke Math. J. 83 (1996), 287-352 Zbl0858.58051MR1390650
  33. M. Gutzwiller, Periodic orbits and classical quantization conditions, J. Math. Phys. 12 (1971), 343-358 
  34. M. Gutzwiller, Chaos in classical and quantum mechanics, (1991), Springer-Verlag Zbl0727.70029MR1077246
  35. F. Haake, Quantum Signatures of Chaos, (2001), Springer Zbl0985.81038MR1806548
  36. G. A. Hagedorn, A. Joye, Exponentially acurrate semiclassical dynamics: Propagation, localization, ehrenfest times, scattering, and more general states, Ann. Henri Poincaré 1 (2000), 837-883 Zbl1050.81017MR1806980
  37. B. Hasselblatt, Hyperbolic dynamics, Handbook of Dynamical Systems, North Holland 1A (2002), 239-320 Zbl1047.37018MR1928520
  38. E. J. Heller, Time dependant approach to semiclassical dynamics, J. Chem. Phys. 62 (1975), 1544-1555 
  39. K. Hepp, The classical limit of quantum mechanical correlation funtions, Comm. Math. Phys. 35 (1974), 265-277 MR332046
  40. S. Hurder, A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Publ. Math., Inst. Hautes Étud. Sci. 72 (1990), 5-61 Zbl0725.58034MR1087392
  41. A. Iantchenko, The Birkhoff normal form for a Fourier integral operator. (La forme normale de Birkhoff pour un opérateur intégral de Fourier.), Asymptotic Anal. 17 (1998), 71-92 Zbl1155.58303MR1632700
  42. A. Iantchenko, J. Sjöstrand, Birkhoff normal forms for Fourier integral operators. II, Am. J. Math. 124 (2002), 817-850 Zbl1011.35144MR1914459
  43. A. Iantchenko, J. Sjöstrand, M. Zworski, Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett. 9 (2002), 337-362 Zbl1258.35208MR1909649
  44. A. Joye, G. Hagedorn, Semiclassical dynamics with exponentially small error estimates, Comm. in Math. Phys. 207 (1999), 439-465 Zbl1031.81519MR1724830
  45. A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, (1995), Cambridge University Press Zbl0878.58020MR1326374
  46. J. P. Keating, Asymptotic properties of the periodic orbits of the cat maps, Nonlinearity 4 (1991), 277-307 Zbl0726.58036MR1107008
  47. J. P. Keating, The cat maps: quantum mechanics and classical motion, Nonlinearity 4 (1991), 309-341 Zbl0726.58037MR1107009
  48. R. G. Littlejohn, The semiclassical evolution of wave-packets, Phys. Rep. 138 (1986), 193-291 MR845963
  49. A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, (2002), Springer, New York Zbl0994.35003MR1872698
  50. S. Nonnenmacher, Evolution of lagrangian states through pertubated cat maps, (2004), Preprint 
  51. A. Perelomov, Generalized coherent states and their applications, (1986), Springer-Verlag Zbl0605.22013MR858831
  52. M. Pollicott, M. Yuri, Dynamical Systems and Ergodic theory, (1998), Cambridge University Press Zbl0897.28009MR1627681
  53. R. Schubert, Semi-classical behaviour of expectation values in time evolved lagrangian states for large times, Commun. Math. Phys. 256 (2005), 239-254 Zbl1067.81040MR2134343
  54. J. Sjöstrand, Resonances associated to a closed hyperbolic trajectory in dimension 2, Asymptotic Anal. 36 (2003), 93-113 Zbl1060.35096MR2021528
  55. J. Sjöstrand, M. Zworski, Quantum monodromy and semi-classical trace formulae, J. Math. Pures Appl. 1 (2002), 1-33 Zbl1038.58033MR1994881
  56. S. Tomsovic, E. J. Heller, Long-time semi-classical dynamics of chaos: the stadium billard, Physical Review E 47 (1993) MR1375006
  57. S. Zelditch, Uniform distribution of the eigenfunctions on compact hyperbolic surfaces, Rev. Mod. Phys. 55 (1987), 919-941 Zbl0643.58029MR916129
  58. S. Zelditch, Quantum dynamics from the semi-classical viewpoint, Lectures at I.H.P. (1996) 
  59. S. Zelditch, Wave invariants at elliptic closed geodesics, Geom. Funct. Anal. 7 (1997), 145-213 Zbl0876.58010MR1437476
  60. S. Zelditch, Wave invariants for non-degenerate closed geodesics, Geom. Funct. Anal. 8 (1998), 179-217 Zbl0908.58022MR1601862
  61. S. Zelditch, Quantum ergodicity and mixing of eigenfunctions, Elsevier Encyclopedia of Math. Phys (2005) 
  62. W. M. Zhang, D. H. Feng, R. Gilmore, Coherent states: theory and some applications, Rev. Mod. Phys. 62 (1990) MR1102385

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.