Toric embedded resolutions of quasi-ordinary hypersurface singularities

Pedro D. González Pérez[1]

  • [1] Université Paris VII, Institut de Mathématiques, UMR CNRS 7586, Équipe Géométrie et et Dynamique, Case 7012, 2 place Jussieu, 75251 Paris Cedex 05 (France)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 6, page 1819-1881
  • ISSN: 0373-0956

Abstract

top
We build two embedded resolution procedures of a quasi-ordinary singularity of complex analytic hypersurface, by using toric morphisms which depend only on the characteristic monomials associated to a quasi-ordinary projection of the singularity. This result answers an open problem of Lipman in Equisingularity and simultaneous resolution of singularities, Resolution of Singularities, Progress in Mathematics No. 181, 2000, 485- 503. In the first procedure the singularity is embedded as hypersurface. In the second procedure, which is inspired by a work of Goldin and Teissier for plane curves (see Resolving singularities of plane analytic branches with one toric morphism, loc. cit., pages 315-340), we re-embed the singularity in an affine space of bigger dimension in such a way that one toric morphism provides its embedded resolution. We compare both procedures and we show that they coincide under suitable hypothesis.

How to cite

top

González Pérez, Pedro D.. "Toric embedded resolutions of quasi-ordinary hypersurface singularities." Annales de l’institut Fourier 53.6 (2003): 1819-1881. <http://eudml.org/doc/116086>.

@article{GonzálezPérez2003,
abstract = {We build two embedded resolution procedures of a quasi-ordinary singularity of complex analytic hypersurface, by using toric morphisms which depend only on the characteristic monomials associated to a quasi-ordinary projection of the singularity. This result answers an open problem of Lipman in Equisingularity and simultaneous resolution of singularities, Resolution of Singularities, Progress in Mathematics No. 181, 2000, 485- 503. In the first procedure the singularity is embedded as hypersurface. In the second procedure, which is inspired by a work of Goldin and Teissier for plane curves (see Resolving singularities of plane analytic branches with one toric morphism, loc. cit., pages 315-340), we re-embed the singularity in an affine space of bigger dimension in such a way that one toric morphism provides its embedded resolution. We compare both procedures and we show that they coincide under suitable hypothesis.},
affiliation = {Université Paris VII, Institut de Mathématiques, UMR CNRS 7586, Équipe Géométrie et et Dynamique, Case 7012, 2 place Jussieu, 75251 Paris Cedex 05 (France)},
author = {González Pérez, Pedro D.},
journal = {Annales de l’institut Fourier},
keywords = {singularities; embedded resolution; discriminant; topological type; embedded reolution},
language = {eng},
number = {6},
pages = {1819-1881},
publisher = {Association des Annales de l'Institut Fourier},
title = {Toric embedded resolutions of quasi-ordinary hypersurface singularities},
url = {http://eudml.org/doc/116086},
volume = {53},
year = {2003},
}

TY - JOUR
AU - González Pérez, Pedro D.
TI - Toric embedded resolutions of quasi-ordinary hypersurface singularities
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 6
SP - 1819
EP - 1881
AB - We build two embedded resolution procedures of a quasi-ordinary singularity of complex analytic hypersurface, by using toric morphisms which depend only on the characteristic monomials associated to a quasi-ordinary projection of the singularity. This result answers an open problem of Lipman in Equisingularity and simultaneous resolution of singularities, Resolution of Singularities, Progress in Mathematics No. 181, 2000, 485- 503. In the first procedure the singularity is embedded as hypersurface. In the second procedure, which is inspired by a work of Goldin and Teissier for plane curves (see Resolving singularities of plane analytic branches with one toric morphism, loc. cit., pages 315-340), we re-embed the singularity in an affine space of bigger dimension in such a way that one toric morphism provides its embedded resolution. We compare both procedures and we show that they coincide under suitable hypothesis.
LA - eng
KW - singularities; embedded resolution; discriminant; topological type; embedded reolution
UR - http://eudml.org/doc/116086
ER -

References

top
  1. N. A' Campo, M. Oka, Geometry of plane curves via Tschirnhausen resolution tower, Osaka J. Math 33 (1996), 1003-1033 Zbl0904.14014MR1435467
  2. S.S. Abhyankar, On the ramification of algebraic functions., Amer. J. Math. 77 (1955), 575-592 Zbl0064.27501MR71851
  3. S.S. Abhyankar, Inversion and invariance of characteristic pairs, Amer. J. Math 89 (1967), 363-372 Zbl0162.34103MR220732
  4. S.S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Instit. Fund. Research, Bombay (1977) Zbl0818.14001
  5. S.S. Abhyankar, T. Moh, Newton-Puiseux Expansion and Generalized Tschirnhausen Transformation I-II, J. reine angew. Math 260 (1973), 47-83 Zbl0272.12102MR337955
  6. C. Ban, L. McEwan, Canonical resolution of a quasi-ordinary surface singularity, Canad. J. Math. 52 (2000), 1149-1163 Zbl1002.14003MR1794300
  7. W. Barth, C. Peters, A. Van de Ven, Compact Complex Surfaces, (1984), Springer-Verlag Zbl0718.14023MR749574
  8. N. Bourbaki, Algebre commutative, Chap. I-IV (1981), Masson Zbl0498.12001MR643362
  9. A. Campillo, Algebroid Curves in positive characteristic, 813 (1980), Springer, Berlin Zbl0451.14010MR584440
  10. D. Cox, Toric Varieties and Toric Resolutions, Resolution of Singularities. A research textbook in tribute to Oscar Zariski 181 (2000), 259-283, Birkhäuser-Verlag Zbl0969.14035
  11. H. Eggers, Polarinvarianten und die Topologie von Kurvensingularitaten, Bonner Mathematische Schriften 147 (1983) Zbl0559.14018MR701391
  12. G. Ewald, Combinatorial Convexity and Algebraic Geometry, (1996), Springer-Verlag Zbl0869.52001MR1418400
  13. W. Fulton, Introduction to Toric Varieties, 131 (1993), Princeton University Press Zbl0813.14039MR1234037
  14. E.R. García, Barroso, Invariants des singularités de courbes planes et courbure des fibres de Milnor, (1996) 
  15. E.R. García, Barroso, Sur les courbes polaires d'une courbe plane réduite, Proc. London Math. Soc 81 (2000), 1-28 Zbl1041.14008MR1756330
  16. E.R. García, Barroso, P.D. González, Pérez, Decomposition in bunches of the critical locus of a quasi-ordinary map (submitted). Zbl1079.14059
  17. Y-N. Gau, Embedded Topological classification of quasi-ordinary singularities, Memoirs of the American Mathematical Society 388 (1988) Zbl0658.14004MR954948
  18. J. Gwoździewicz, A. Ploski, On the Approximate Roots of Polynomials, Annales Polonici Mathematici LX (1995), 199-210 Zbl0826.13012MR1316488
  19. R. Goldin, B. Teissier, Resolving singularities of plane analytic branches with one toric morphism, Resolution of Singularities. A research textbook in tribute to Oscar Zariski. 181 (2000), 315-340, Birkhäuser-Verlag Zbl0995.14002
  20. P.D. González, Pérez, Singularités quasi-ordinaires toriques et polyèdre de Newton du discriminant, Canadian J. Math. 52 (2000), 348-368 Zbl0970.14027MR1755782
  21. P.D. González, Pérez, Quasi-ordinary singularities via toric geometry, (2000) Zbl0970.14027
  22. P.D. González, Pérez, The semigroup of a quasi-ordinary hypersurface Zbl1036.32020MR1990220
  23. P.D. González, Pérez, L.J. Mc, Ewan, A. Némethi, The zeta function of a quasi-ordinary singularity II Zbl1080.14002MR1986117
  24. P.D. González, Pérez, B. Teissier, Toric embedded resolution of non necessarily normal toric varieties, to appear in C. R. Acad. Sci. Paris, Sér. I Math. Zbl1052.14062
  25. G. Gonzalez-Sprinberg, M. Lejeune-Jalabert, Modèles canoniques plongés. I, Kodai Math. J. 14 (1991), 194-209 Zbl0772.14008MR1123416
  26. H.W.E. Jung, Darstellung der Funktionen eines algebraischen Körpers zweier unabhaängigen Veränderlichen x , y in der Umgebung einer stelle x = a , y = b , J. reine angew. Math. 133 (1908), 289-314 
  27. G. Kempf, F. Knudsen, D. Mumford, B. St-Donat, Toroidal Embeddings, 339 (1973), Springer Verlag Zbl0271.14017
  28. A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Inv. Mat 32 (1976), 1-31 Zbl0328.32007MR419433
  29. H. Laufer, Normal two dimensional singularities, 71 (1971), Princenton University Press Zbl0245.32005MR320365
  30. J. Lipman, Quasi-ordinary singularities of embedded surfaces, (1965) 
  31. J. Lipman, Introduction to Resolution of Singularities, Proceedings of Symposia in Pure Mathematics 29 (1975), 187-230 Zbl0306.14007MR389901
  32. J. Lipman, Quasi-ordinary singularities of surfaces in 3 , Proceedings of Symposia in Pure Mathematics 40 (1983), 161-172 Zbl0521.14014MR713245
  33. J. Lipman, Topological invariants of quasi-ordinary singularities, Memoirs of the American Mathematical Society 388 (1988) Zbl0658.14003MR954947
  34. J. Lipman, Equisingularity and simultaneous resolution of singularities, Resolution of Singularities. A research textbook in tribute to Oscar Zariski. 181 (2000), 485-503, Birkhäuser-Verlag Zbl0970.14011
  35. I. Luengo, On the structure of embedded algebroid surfaces, Proceedings of Symposia in Pure Mathematics 40 (1983), 185-193 Zbl0527.14032MR713247
  36. D.T. Lê, M. Oka, On resolution complexity of plane curves, Kodaira Math. J 18 (1995), 1-36 Zbl0844.14010MR1317003
  37. D.T. Lê, F. Michel, C. Weber, Sur le comportement des polaires associées aux germes de courbes planes, Compositio Math. 72 (1989), 87-113 Zbl0705.32021MR1026330
  38. M. Lejeune-Jalabert, Sur l’équivalence des singularités des courbes algebroïdes planes (coefficients de Newton), Introduction à la théorie des singularités I (1988), 49-154, Hermann, Paris Zbl0699.14036
  39. M. Lejeune-Jalabert, A. Reguera López, Arcs and wedges on sandwiched surface singularities, Amer. J. Math 121 (1999), 1191-1213 Zbl0960.14015MR1719822
  40. M. Lejeune-Jalabert, A. Reguera López, Desingularization of both a plane branch C and its monomial curve C Γ , (2000) 
  41. L.J. McEwan, A. Némethi, The zeta function of a quasi-ordinary singularity I Zbl1066.14004MR1986117
  42. M. Merle, Invariants polaires des courbes planes, Inv. Math. 41 (1977), 103-111 Zbl0371.14003MR460336
  43. D. Mumford, The Red Book on Varieties and Schemes, 1358 (1988), Springer-Verlag Zbl0658.14001MR971985
  44. T. Oda, Convex Bodies and Algebraic Geometry, 131 (1988), Springer-Verlag Zbl0628.52002MR922894
  45. M. Oka, Geometry of plane curves via toroidal resolution, Algebraic Geometry and Singularities 139 (1996), Birkhäuser, Basel Zbl0857.14014
  46. P. Popescu-Pampu, Approximate roots, Valuation Theory and its Applications vol. II Zbl1036.13017
  47. P. Popescu-Pampu, Arbres de contact des singularités quasi-ordinaires et graphes d'adjacence pour les 3-variétés réelles, (2001) 
  48. J.E. Reeve, A summary of results on the topological classification of plane algebroid singularities, Rend. Sem. Mat. Univ. e Politec. Torino (1954-55) 14, 159-187 Zbl0067.12904
  49. B. Sturmfels, Gröbner Bases and Convex Polytopes, Vol 8 (1996), American Mathematical Society Zbl0856.13020MR1363949
  50. B. Teissier, The monomial curve and its deformations. Appendix in [Z6] 
  51. B. Teissier, Valuations, Deformations and Toric Geometry, Valuation Theory and its Applications. vol. II Zbl1061.14016
  52. O. Villamayor, Constructiveness of Hironaka's resolution., Ann. Sci. Ecole Norm. Sup. (4) 22 (1989), 1-32 Zbl0675.14003MR985852
  53. O. Villamayor, On Equiresolution and a question of Zariski, Acta Math 185 (2000), 123-159 Zbl0989.32004MR1794188
  54. C.T.C. Wall, Chains on the Eggers tree and polar curves, Revista Mat. Iberoamericana 19 (2003), 1-10 Zbl1057.14032MR2023205
  55. R.J. Walker, Reduction of the Singularities of an Algebraic Surface, Annals of Maths 36 (1935), 336-365 Zbl61.0705.02MR1503227
  56. O. Zariski, Le probléme de la réduction des singularités d'une variété algébrique, Bull. Sci. Mathématiques 78 (1954), 31-40 Zbl0055.38802MR62474
  57. O. Zariski, The connectedness theorem for birrational transformations, Algebraic Geometry and Topology (Symposium in honor of S. Lefschetz) (1955), 182-188, Princenton University Press Zbl0087.35601
  58. O. Zariski, Studies in Equisingularity. I., Amer. J. Math. 87 (1965), 507-536 Zbl0132.41601MR177985
  59. O. Zariski, Exceptional Singularities of an Algebroid Surface and their Reduction, Atti. Accad. Naz. Lincei Rend., Cl. Sci. Fis. Mat. Natur. (8) 43 (1967), 135-146 Zbl0168.18903MR229648
  60. O. Zariski, Le problème des modules pour les branches planes, (1986), Hermann, Paris Zbl0592.14010MR861277
  61. S.S. Abhyankar, T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation. I, II., J. Reine Angew. Math. 261 (1973), 29-54 Zbl0272.12102MR337955
  62. O. Zariski, Contributions to the problem of equisingularity, Questions on Algebraic varieties. (C.I.M.E., III ciclo, Varenna 7-17 Settembre 1969) (1970), 261-343, Roma Zbl0204.54503
  63. O. Zariski, Studies in equisingularity. II., Amer. J. Math. 87 (1965), 972-1006 Zbl0146.42502MR191898
  64. O. Zariski, Collected Papers IV (1979) 
  65. O. Zariski, Collected papers I (1979) 
  66. O. Zariski, Collected papers IV (1979) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.