The trace of the generalized harmonic oscillator

Jared Wunsch

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 1, page 351-373
  • ISSN: 0373-0956

Abstract

top
We study a geometric generalization of the time-dependent Schrödinger equation for the harmonic oscillator D t + 1 2 Δ + V ψ = 0 ( 0 . 1 ) where Δ is the Laplace-Beltrami operator with respect to a “scattering metric” on a compact manifold M with boundary (the class of scattering metrics is a generalization of asymptotically Euclidean metrics on n , radially compactified to the ball) and V is a perturbation of 1 2 ω 2 x - 2 , with x a boundary defining function for M (e.g. x = 1 / r in the compactified Euclidean case). Using the quadratic-scattering wavefront set, a generalization of Hörmander’s wavefront set that measures oscillation at M as well as singularities, we describe a propagation of singularities theorem for solutions of (0.1). This enables us to prove the following trace theorem : let S ω = L ω : there exists a closed geodesic in M of length ± L n π ω : there exists a geodesic n -gon in M with vertices M { 0 } . Let U ( t ) = e i t ( 1 2 Δ + V ) be the solution operator to the Cauchy problem for (0.1). Then under a non-trapping assumption for the geodesic flow on M , we have supp sing Tr U ( t ) S ω , where Tr U ( t ) is the distribution given by integrating the Schwartz kernel of U ( t ) over the diagonal in M × M or, alternatively, by j e - i t λ j , where λ j are the eigenvalues of 1 2 Δ + V .

How to cite

top

Wunsch, Jared. "The trace of the generalized harmonic oscillator." Annales de l'institut Fourier 49.1 (1999): 351-373. <http://eudml.org/doc/75340>.

@article{Wunsch1999,
abstract = {We study a geometric generalization of the time-dependent Schrödinger equation for the harmonic oscillator\begin\{\}\Big (D\_t+\{1\over 2\}\Delta +V\Big )\psi =0\qquad (0.1)\end\{\}where $\Delta $ is the Laplace-Beltrami operator with respect to a “scattering metric” on a compact manifold $M$ with boundary (the class of scattering metrics is a generalization of asymptotically Euclidean metrics on $\{\Bbb R\}^n$, radially compactified to the ball) and $V$ is a perturbation of $\{1\over 2\}\omega ^2x^\{-2\}$, with $x$ a boundary defining function for $M$ (e.g. $x=1/r$ in the compactified Euclidean case). Using the quadratic-scattering wavefront set, a generalization of Hörmander’s wavefront set that measures oscillation at $\partial M$ as well as singularities, we describe a propagation of singularities theorem for solutions of (0.1). This enables us to prove the following trace theorem : let\begin\{\}S\_\omega =\Big \lbrace \{L\over \omega \}:\text\{there\} \text\{exists\} \text\{a\} \text\{closed\} \text\{geodesic\} \text\{in\}~\partial M~\text\{of\} \text\{length\}~ \pm L\Big \rbrace \end\{\}\begin\{\}\cup \Big \lbrace \{n\pi \over \omega \}:\text\{there\} \text\{exists\} \text\{a\} \text\{geodesic\}~n\text\{-gon\} \text\{in\}~M~\text\{with\} \text\{vertices\}~\partial M\Big \rbrace \cup \lbrace 0\rbrace .\end\{\}Let $U(t)=\{\rm e\}^\{it(\{1\over 2\}\Delta +V)\}$ be the solution operator to the Cauchy problem for (0.1). Then under a non-trapping assumption for the geodesic flow on $\{\mathrel \{\mathop \{\hspace\{0.0pt\}M\}\limits ^\{\circ \}\}\}$, we have\begin\{\}\{\rm supp~sing~Tr\}\,U(t)\subset S\_\omega ,\end\{\}where $\{\rm Tr\}\,U(t)$ is the distribution given by integrating the Schwartz kernel of $U(t)$ over the diagonal in $M\times M$ or, alternatively, by $\sum _j\{\rm e\}^\{-it\lambda _j\}$, where $\lambda _j$ are the eigenvalues of $\{1\over 2\}\Delta +V$.},
author = {Wunsch, Jared},
journal = {Annales de l'institut Fourier},
keywords = {Schrödinger equation; harmonic oscillator; propagation of singularities; scattering metric; trace theorem},
language = {eng},
number = {1},
pages = {351-373},
publisher = {Association des Annales de l'Institut Fourier},
title = {The trace of the generalized harmonic oscillator},
url = {http://eudml.org/doc/75340},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Wunsch, Jared
TI - The trace of the generalized harmonic oscillator
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 1
SP - 351
EP - 373
AB - We study a geometric generalization of the time-dependent Schrödinger equation for the harmonic oscillator\begin{}\Big (D_t+{1\over 2}\Delta +V\Big )\psi =0\qquad (0.1)\end{}where $\Delta $ is the Laplace-Beltrami operator with respect to a “scattering metric” on a compact manifold $M$ with boundary (the class of scattering metrics is a generalization of asymptotically Euclidean metrics on ${\Bbb R}^n$, radially compactified to the ball) and $V$ is a perturbation of ${1\over 2}\omega ^2x^{-2}$, with $x$ a boundary defining function for $M$ (e.g. $x=1/r$ in the compactified Euclidean case). Using the quadratic-scattering wavefront set, a generalization of Hörmander’s wavefront set that measures oscillation at $\partial M$ as well as singularities, we describe a propagation of singularities theorem for solutions of (0.1). This enables us to prove the following trace theorem : let\begin{}S_\omega =\Big \lbrace {L\over \omega }:\text{there} \text{exists} \text{a} \text{closed} \text{geodesic} \text{in}~\partial M~\text{of} \text{length}~ \pm L\Big \rbrace \end{}\begin{}\cup \Big \lbrace {n\pi \over \omega }:\text{there} \text{exists} \text{a} \text{geodesic}~n\text{-gon} \text{in}~M~\text{with} \text{vertices}~\partial M\Big \rbrace \cup \lbrace 0\rbrace .\end{}Let $U(t)={\rm e}^{it({1\over 2}\Delta +V)}$ be the solution operator to the Cauchy problem for (0.1). Then under a non-trapping assumption for the geodesic flow on ${\mathrel {\mathop {\hspace{0.0pt}M}\limits ^{\circ }}}$, we have\begin{}{\rm supp~sing~Tr}\,U(t)\subset S_\omega ,\end{}where ${\rm Tr}\,U(t)$ is the distribution given by integrating the Schwartz kernel of $U(t)$ over the diagonal in $M\times M$ or, alternatively, by $\sum _j{\rm e}^{-it\lambda _j}$, where $\lambda _j$ are the eigenvalues of ${1\over 2}\Delta +V$.
LA - eng
KW - Schrödinger equation; harmonic oscillator; propagation of singularities; scattering metric; trace theorem
UR - http://eudml.org/doc/75340
ER -

References

top
  1. [1] J. CHAZARAIN, Formule de Poisson pour les variétés riemanniennes, Inv. Math., 24 (1974), 65-82. Zbl0281.35028MR49 #8062
  2. [2] J. CHAZARAIN, Spectre d'un Hamiltonien quantique et méchanique classique, Comm. PDE, 5 (1980), 599-644. Zbl0449.35042MR82d:58064
  3. [3] Y. COLIN DE VERDIÈRE, Spectre de laplacien et longueurs des géodésiques périodiques I, Comp. Math., 27 (1973), 83-106. Zbl0272.53034MR50 #1293
  4. [4] Y. COLIN DE VERDIÈRE, Spectre du laplacien et longueurs des géodésiques périodiques II, Comp. Math., 27 (1973), 159-184. Zbl0281.53036MR50 #1293
  5. [5] W. CRAIG, T. KAPPELER, W. STRAUSS, Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math., 48 (1995), 769-860. Zbl0856.35106MR96m:35057
  6. [6] J.J. DUISTERMAAT, V.W. GUILLEMIN, The spectrum of positive elliptic operators and periodic bicharacteristics, Inv. Math., 29 (1975), 39-79. Zbl0307.35071MR53 #9307
  7. [7] D. FUJIWARA, Remarks on the convergence of the Feynman path integrals, Duke Math. J., 47 (1980), 559-600. Zbl0457.35026MR83c:81030
  8. [8] L. KAPITANSKI, I. RODNIANSKI, K. YAJIM, On the fundamental solution of a perturbed harmonic oscillator, Topol. Methods Nonlinear Anal., 9 (1997), 77-106. Zbl0892.35035MR98m:35033
  9. [9] R.B. MELROSE, Spectral and scattering theory for the Laplacian on asymptotically Euclidean spaces, Spectral and scattering theory, M. Ikawa ed., Marcel Dekker, 1994. Zbl0837.35107
  10. [10] R.B. MELROSE, M. ZWORSKI, Scattering metrics and geodesic flow a infinity, Inv. Math., 124 (1996), 389-436. Zbl0855.58058MR96k:58230
  11. [11] F. TREVES, Parametrices for a class of Schrödinger equations, Comm. Pure Appl. Math., 48 (1995), 13-78. Zbl0832.35160MR95m:35050
  12. [12] A. WEINSTEIN, A symbol class for some Schrödinger equations on Rn, Amer. J. Math., 107 (1985), 1-21. Zbl0574.35023MR87a:58150
  13. [13] J. WUNSCH, Propagation of singularities and growth for Schrödinger operators, Duke Math. J., to appear. Zbl0953.35121
  14. [14] K. YAJIMA, Smoothness and non-smoothness of the fundamental solution of time-dependent Schrödinger equations, Comm. Math. Phys., 181 (1996), 605-629. Zbl0883.35022MR97j:35001
  15. [15] S. ZELDITCH, Reconstruction of singularities for solutions of Schrödinger equations, Comm. Math. Phys., 90 (1983), 1-26. Zbl0554.35031MR85d:81029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.