Brownian motion in a Weyl chamber, non-colliding particles, and random matrices
Annales de l'I.H.P. Probabilités et statistiques (1999)
- Volume: 35, Issue: 2, page 177-204
- ISSN: 0246-0203
Access Full Article
topHow to cite
topGrabiner, David J.. "Brownian motion in a Weyl chamber, non-colliding particles, and random matrices." Annales de l'I.H.P. Probabilités et statistiques 35.2 (1999): 177-204. <http://eudml.org/doc/77627>.
@article{Grabiner1999,
author = {Grabiner, David J.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Brownian motion; Weyl chamber; determinant formula},
language = {eng},
number = {2},
pages = {177-204},
publisher = {Gauthier-Villars},
title = {Brownian motion in a Weyl chamber, non-colliding particles, and random matrices},
url = {http://eudml.org/doc/77627},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Grabiner, David J.
TI - Brownian motion in a Weyl chamber, non-colliding particles, and random matrices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 2
SP - 177
EP - 204
LA - eng
KW - Brownian motion; Weyl chamber; determinant formula
UR - http://eudml.org/doc/77627
ER -
References
top- [1] J.F. Adams, Lectures on Lie Groups, University of Chicago Press, 1969. Zbl0206.31604MR252560
- [2] P. Bérard and G. Besson, Spectres et groupes cristallographiques II: domaines sphériques, Ann. Inst. Fourier, Vol. 30, 3, 1980, pp. 237-248.. Zbl0426.35073MR597025
- [3] P. Biane, Minuscule weights and random walks on lattices, Quant. Prob. Rel. Topics, Vol. 7, 1992, pp. 51-65. Zbl0787.60089MR1186654
- [4] P. Biane, Permutation model for semi-circular systems and quantum random walks, Pacific J. Math., Vol. 171, 1995, pp. 373-387. Zbl0854.60070MR1372234
- [5] N. Bourbaki, Groupes et Algèbres de Lie, Chapters 4, 5, 6. Hermann, Paris, 1968. Zbl0483.22001MR240238
- [6] N. Bourbaki, Groupes et Algèbres de Lie, Chapter 9. Masson, Paris, 1982. Zbl0505.22006
- [7] D.L. Burkholder, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Adv. Math., Vol. 26, 1977, pp. 182-205. Zbl0372.60112MR474525
- [8] R.D. Deblassie, Exit times from cones in Rn of Brownian motion, Prob. Th. Rel. Fields, Vol. 74, 1987, pp. 1-29. Zbl0586.60077MR863716
- [9] J.L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Springer-Verlag, New York, 1984. Zbl0549.31001MR731258
- [10] F.J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Math. Phys., Vol. 3, 1962, pp. 1191-1198. Zbl0111.32703MR148397
- [11] D. Freedman, Brownian Motion and Diffusion, Holden-Day, San Francisco; second edition published by Springer-Verlag, New York, 1971. Zbl0231.60072MR686607
- [12] I.M. Gessel and D. Zeilberger, Random walk in a Weyl chamber, Proc. Amer. Math. Soc., Vol. 115, 1992, pp. 27-31. Zbl0792.05148MR1092920
- [13] D.J. Grabiner and P. Magyar, Random walks in Weyl chambers and the decomposition of tensor powers, J. Alg. Combin., Vol. 2, 1993, pp. 239-260. Zbl0780.60069MR1235279
- [14] J.M. Harrison, Brownian Motion and Stochastic Flow Systems, John Wiley and Sons, New York, 1985. Zbl0659.60112MR798279
- [15] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972. Zbl0254.17004MR323842
- [16] D. Hobson and W. Werner, Non-colliding Brownian motion on the circle, Bull. London. Math. Soc., Vol. 28, 1996, pp. 643-650. Zbl0853.60060MR1405497
- [17] S.P. Karlin and G. Macgregor, Coincidence probabilities, Pacific. J. Math., Vol. 9, 1959, pp. 1141-1164. Zbl0092.34503MR114248
- [18] S.P. Karlin and H.M. Taylor, A Second Course in Stochastic Processes, Academic Press, New York, 1981. Zbl0469.60001MR611513
- [19] I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, 1979. Zbl0487.20007MR553598
- [20] I.G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal., Vol. 13, 1982, pp. 988-1007. Zbl0498.17006MR674768
- [21] H.P. Mckean, Stochastic Integrals, Academic Press, New York, 1969. Zbl0191.46603MR247684
- [22] M.L. Mehta, Random Matrices: Second Edition, Academic Press, New York, 1991. Zbl0780.60014MR1083764
- [23] N. O'Connell and A. Unwin, Collision times and exit times from cones: A duality, Stoch. Proc. Appl., Vol. 43, 1992, pp. 291-301. Zbl0765.60083MR1191152
- [24] J. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process, Ann. Appl. Prob., Vol. 7, 1975, pp. 511-526. Zbl0332.60055MR375485
- [25] R.A. Proctor, Reflection and algorithm proofs of some more Lie group dual pair identities, J. Combin. Th. A, Vol. 62, 1993, pp. 107-127. Zbl0769.05096MR1198383
- [26] A. Selberg, Bemerkinger om et multipelt integral, Norsk Mathematisk Tidsskrift, Vol. 26, 1944, pp. 71-78. Zbl0063.06870MR18287
- [27] T. Watanabe and S.G. Mohanty, On an inclusion-exclusion formula based on the reflection principle, Discrete Math, Vol. 64, 1987, pp. 281-288. Zbl0617.05008MR887367
- [28] D. Williams, Path decomposition and continuity of local time for one-dimensional diffusions, Proc. London Math. Soc., Vol. 28, 1974, pp. 738-768. Zbl0326.60093MR350881
- [29] D. Zeilberger, Andre's reflection proof generalized to the many-candidate ballot problem, Discrete Math, Vol. 44, 1983, pp. 325-326. Zbl0508.05008MR696297
Citations in EuDML Documents
top- Emmanuel Cépa, Dominique Lépingle, Brownian particles with electrostatic repulsion on the circle : Dyson’s model for unitary random matrices revisited
- Emmanuel Cépa, Dominique Lépingle, Brownian particles with electrostatic repulsion on the circle: Dyson's model for unitary random matrices revisited
- Neil O'Connell, Random matrices, non-colliding processes and queues
- Irina Kurkova, Kilian Raschel, Random walks in with non-zero drift absorbed at the axes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.