Brownian motion in a Weyl chamber, non-colliding particles, and random matrices

David J. Grabiner

Annales de l'I.H.P. Probabilités et statistiques (1999)

  • Volume: 35, Issue: 2, page 177-204
  • ISSN: 0246-0203

How to cite

top

Grabiner, David J.. "Brownian motion in a Weyl chamber, non-colliding particles, and random matrices." Annales de l'I.H.P. Probabilités et statistiques 35.2 (1999): 177-204. <http://eudml.org/doc/77627>.

@article{Grabiner1999,
author = {Grabiner, David J.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Brownian motion; Weyl chamber; determinant formula},
language = {eng},
number = {2},
pages = {177-204},
publisher = {Gauthier-Villars},
title = {Brownian motion in a Weyl chamber, non-colliding particles, and random matrices},
url = {http://eudml.org/doc/77627},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Grabiner, David J.
TI - Brownian motion in a Weyl chamber, non-colliding particles, and random matrices
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1999
PB - Gauthier-Villars
VL - 35
IS - 2
SP - 177
EP - 204
LA - eng
KW - Brownian motion; Weyl chamber; determinant formula
UR - http://eudml.org/doc/77627
ER -

References

top
  1. [1] J.F. Adams, Lectures on Lie Groups, University of Chicago Press, 1969. Zbl0206.31604MR252560
  2. [2] P. Bérard and G. Besson, Spectres et groupes cristallographiques II: domaines sphériques, Ann. Inst. Fourier, Vol. 30, 3, 1980, pp. 237-248.. Zbl0426.35073MR597025
  3. [3] P. Biane, Minuscule weights and random walks on lattices, Quant. Prob. Rel. Topics, Vol. 7, 1992, pp. 51-65. Zbl0787.60089MR1186654
  4. [4] P. Biane, Permutation model for semi-circular systems and quantum random walks, Pacific J. Math., Vol. 171, 1995, pp. 373-387. Zbl0854.60070MR1372234
  5. [5] N. Bourbaki, Groupes et Algèbres de Lie, Chapters 4, 5, 6. Hermann, Paris, 1968. Zbl0483.22001MR240238
  6. [6] N. Bourbaki, Groupes et Algèbres de Lie, Chapter 9. Masson, Paris, 1982. Zbl0505.22006
  7. [7] D.L. Burkholder, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Adv. Math., Vol. 26, 1977, pp. 182-205. Zbl0372.60112MR474525
  8. [8] R.D. Deblassie, Exit times from cones in Rn of Brownian motion, Prob. Th. Rel. Fields, Vol. 74, 1987, pp. 1-29. Zbl0586.60077MR863716
  9. [9] J.L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Springer-Verlag, New York, 1984. Zbl0549.31001MR731258
  10. [10] F.J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Math. Phys., Vol. 3, 1962, pp. 1191-1198. Zbl0111.32703MR148397
  11. [11] D. Freedman, Brownian Motion and Diffusion, Holden-Day, San Francisco; second edition published by Springer-Verlag, New York, 1971. Zbl0231.60072MR686607
  12. [12] I.M. Gessel and D. Zeilberger, Random walk in a Weyl chamber, Proc. Amer. Math. Soc., Vol. 115, 1992, pp. 27-31. Zbl0792.05148MR1092920
  13. [13] D.J. Grabiner and P. Magyar, Random walks in Weyl chambers and the decomposition of tensor powers, J. Alg. Combin., Vol. 2, 1993, pp. 239-260. Zbl0780.60069MR1235279
  14. [14] J.M. Harrison, Brownian Motion and Stochastic Flow Systems, John Wiley and Sons, New York, 1985. Zbl0659.60112MR798279
  15. [15] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972. Zbl0254.17004MR323842
  16. [16] D. Hobson and W. Werner, Non-colliding Brownian motion on the circle, Bull. London. Math. Soc., Vol. 28, 1996, pp. 643-650. Zbl0853.60060MR1405497
  17. [17] S.P. Karlin and G. Macgregor, Coincidence probabilities, Pacific. J. Math., Vol. 9, 1959, pp. 1141-1164. Zbl0092.34503MR114248
  18. [18] S.P. Karlin and H.M. Taylor, A Second Course in Stochastic Processes, Academic Press, New York, 1981. Zbl0469.60001MR611513
  19. [19] I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, 1979. Zbl0487.20007MR553598
  20. [20] I.G. Macdonald, Some conjectures for root systems, SIAM J. Math. Anal., Vol. 13, 1982, pp. 988-1007. Zbl0498.17006MR674768
  21. [21] H.P. Mckean, Stochastic Integrals, Academic Press, New York, 1969. Zbl0191.46603MR247684
  22. [22] M.L. Mehta, Random Matrices: Second Edition, Academic Press, New York, 1991. Zbl0780.60014MR1083764
  23. [23] N. O'Connell and A. Unwin, Collision times and exit times from cones: A duality, Stoch. Proc. Appl., Vol. 43, 1992, pp. 291-301. Zbl0765.60083MR1191152
  24. [24] J. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process, Ann. Appl. Prob., Vol. 7, 1975, pp. 511-526. Zbl0332.60055MR375485
  25. [25] R.A. Proctor, Reflection and algorithm proofs of some more Lie group dual pair identities, J. Combin. Th. A, Vol. 62, 1993, pp. 107-127. Zbl0769.05096MR1198383
  26. [26] A. Selberg, Bemerkinger om et multipelt integral, Norsk Mathematisk Tidsskrift, Vol. 26, 1944, pp. 71-78. Zbl0063.06870MR18287
  27. [27] T. Watanabe and S.G. Mohanty, On an inclusion-exclusion formula based on the reflection principle, Discrete Math, Vol. 64, 1987, pp. 281-288. Zbl0617.05008MR887367
  28. [28] D. Williams, Path decomposition and continuity of local time for one-dimensional diffusions, Proc. London Math. Soc., Vol. 28, 1974, pp. 738-768. Zbl0326.60093MR350881
  29. [29] D. Zeilberger, Andre's reflection proof generalized to the many-candidate ballot problem, Discrete Math, Vol. 44, 1983, pp. 325-326. Zbl0508.05008MR696297

Citations in EuDML Documents

top
  1. Emmanuel Cépa, Dominique Lépingle, Brownian particles with electrostatic repulsion on the circle : Dyson’s model for unitary random matrices revisited
  2. Emmanuel Cépa, Dominique Lépingle, Brownian particles with electrostatic repulsion on the circle: Dyson's model for unitary random matrices revisited
  3. Neil O'Connell, Random matrices, non-colliding processes and queues
  4. Irina Kurkova, Kilian Raschel, Random walks in ( + ) 2 with non-zero drift absorbed at the axes

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.