Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On quasi-p-bounded subsets

M. SanchisA. Tamariz-Mascarúa — 1999

Colloquium Mathematicae

The notion of quasi-p-boundedness for p ∈ ω * is introduced and investigated. We characterize quasi-p-pseudocompact subsets of β(ω) containing ω, and we show that the concepts of RK-compatible ultrafilter and P-point in ω * can be defined in terms of quasi-p-pseudocompactness. For p ∈ ω * , we prove that a subset B of a space X is quasi-p-bounded in X if and only if B × P R K ( p ) is bounded in X × P R K ( p ) , if and only if c l β ( X × P R K ( p ) ) ( B × P R K ( p ) ) = c l β X B × β ( ω ) , where P R K ( p ) is the set of Rudin-Keisler predecessors of p.

The partially pre-ordered set of compactifications of Cp(X, Y)

A. Dorantes-AldamaR. Rojas-HernándezÁ. Tamariz-Mascarúa — 2015

Topological Algebra and its Applications

In the set of compactifications of X we consider the partial pre-order defined by (W, h) ≤X (Z, g) if there is a continuous function f : Z ⇢ W, such that (f ∘ g)(x) = h(x) for every x ∈ X. Two elements (W, h) and (Z, g) of K(X) are equivalent, (W, h) ≡X (Z, g), if there is a homeomorphism h : W ! Z such that (f ∘ g)(x) = h(x) for every x ∈ X. We denote by K(X) the upper semilattice of classes of equivalence of compactifications of X defined by ≤X and ≡X. We analyze in this article K(Cp(X, Y)) where...

Page 1

Download Results (CSV)