Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Minimal reducible bounds for hom-properties of graphs

Amelie BergerIzak Broere — 1999

Discussiones Mathematicae Graph Theory

Let H be a fixed finite graph and let → H be a hom-property, i.e. the set of all graphs admitting a homomorphism into H. We extend the definition of → H to include certain infinite graphs H and then describe the minimal reducible bounds for → H in the lattice of additive hereditary properties and in the lattice of hereditary properties.

Minimal forbidden subgraphs of reducible graph properties

Amelie J. Berger — 2001

Discussiones Mathematicae Graph Theory

A property of graphs is any class of graphs closed under isomorphism. Let ₁,₂,...,ₙ be properties of graphs. A graph G is (₁,₂,...,ₙ)-partitionable if the vertex set V(G) can be partitioned into n sets, V₁,V₂,..., Vₙ, such that for each i = 1,2,...,n, the graph G [ V i ] i . We write ₁∘₂∘...∘ₙ for the property of all graphs which have a (₁,₂,...,ₙ)-partition. An additive induced-hereditary property is called reducible if there exist additive induced-hereditary properties ₁ and ₂ such that = ₁∘₂. Otherwise...

Prime ideals in the lattice of additive induced-hereditary graph properties

Amelie J. BergerPeter Mihók — 2003

Discussiones Mathematicae Graph Theory

An additive induced-hereditary property of graphs is any class of finite simple graphs which is closed under isomorphisms, disjoint unions and induced subgraphs. The set of all additive induced-hereditary properties of graphs, partially ordered by set inclusion, forms a completely distributive lattice. We introduce the notion of the join-decomposability number of a property and then we prove that the prime ideals of the lattice of all additive induced-hereditary properties are divided into two groups,...

Page 1

Download Results (CSV)