Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Nombres normaux

Anne Bertrand-Mathis — 1996

Journal de théorie des nombres de Bordeaux

Nous rassemblons divers résultats sur les nombres normaux et en déduisons de nouveaux résultats.

Nombres self normaux

Anne Bertrand-Mathis — 2013

Bulletin de la Société Mathématique de France

Nous inspirant de la construction de Champernowne d’un nombre normal en base 10 nous construisons un ensemble de nombres “self-normaux“ au sens de Schmeling ; cet ensemble est non dénombrable et dense dans [ 1 , [ .

Nombres de Pisots, matrices primitives et bêta-conjugués

Anne Bertrand-Mathis — 2012

Journal de Théorie des Nombres de Bordeaux

Soit β un nombre de Pisot ; nous montrons que pour tout entier n assez grand il existe une matrice carrée à coefficients positifs ou nuls dont l’ordre est égal au degré de β et dont β n est valeur propre. Soit β = a 1 / β + a 2 / β 2 + + a n / β n + le β -développement de β  ; si β est un nombre de Pisot, alors la suite ( a n ) n 1 est périodique après un certain rang n 0 (pour n n 0 , a n + k = a n ) et le polynôme X n 0 + k - ( a 1 X n 0 + k - 1 + + a n 0 + k ) - ( X n 0 - ( a 1 X n 0 + + a n 0 ) ) est appelé polynôme de Parry. Nous montrons qu’il existe un ensemble relativement dense d’entiers n tels que le polynôme...

Applications de la notion d'entropie au développement d'un nombre réel dans une base de Pisot

Anne Bertrand-Mathis — 1985

Annales de l'institut Fourier

Soit θ un nombre de Pisot de degré s  ; nous avons montré précédemment que l’endomorphisme du tore T s dont θ est valeur propre est facteur du θ -shift bilatéral par une application continue q s  ; nous prouvons ici (théorème 1) que l’application q s conserve l’entropie de toute mesure invariante sur le θ -shift. Ceci permet de définir l’entropie d’un nombre dans la base θ et d’en étudier la stabilité. Nous généralisons également des résultats de Kamae, Rauzy et Bernay.

Nombres normaux dans diverses bases

Anne Bertrand-Mathis — 1995

Annales de l'institut Fourier

En s’inspirant d’un article de Feldman et Smorodinsky on étudie l’apparition d’un bloc de chiffres fixé dans le θ -développement de β n . On montre que si β et θ sont des nombres de Pisot non équivalents, les ensembles des nombres normaux au sens des chiffres pour β et θ sont différents, et que si θ est un Pisot et β un entier algébrique non équivalent à θ , les ensembles des nombres géométriquement normaux relativement à β et θ sont distincts.

Page 1

Download Results (CSV)