Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Anomalous diffusion phenomena: A kinetic approach

Antoine Mellet

Séminaire Laurent Schwartz — EDP et applications

In this talk, we review some aspects of the derivation of fractional diffusion equations from kinetic equations and in particular some applications to the description of anomalous energy transport in FPU chains. This is based on joint works with N. Ben Abdallah, L. Cesbron, S. Merino, S. Mischler, C. Mouhot and M. Puel

Homogenization and diffusion asymptotics of the linear Boltzmann equation

Thierry GoudonAntoine Mellet — 2003

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the diffusion limit for general conservative Boltzmann equations with oscillating coefficients. Oscillations have a frequency of the same order as the inverse of the mean free path, and the coefficients may depend on both slow and fast variables. Passing to the limit, we are led to an effective drift-diffusion equation. We also describe the diffusive behaviour when the equilibrium function has a non-vanishing flux.

Homogenization and Diffusion Asymptotics of the Linear Boltzmann Equation

Thierry GoudonAntoine Mellet — 2010

ESAIM: Control, Optimisation and Calculus of Variations

We investigate the diffusion limit for general conservative Boltzmann equations with oscillating coefficients. Oscillations have a frequency of the same order as the inverse of the mean free path, and the coefficients may depend on both slow and fast variables. Passing to the limit, we are led to an effective drift-diffusion equation. We also describe the diffusive behaviour when the equilibrium function has a non-vanishing flux.

Page 1

Download Results (CSV)