Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Cycles in graphs and related problems

Antoni Marczyk — 2008

Our aim is to survey results in graph theory centered around four themes: hamiltonian graphs, pancyclic graphs, cycles through vertices and the cycle structure in a graph. We focus on problems related to the closure result of Bondy and Chvátal, which is a common generalization of two fundamental theorems due to Dirac and Ore. We also describe a number of proof techniques in this domain. Aside from the closure operation we give some applications of Ramsey theory in the research of cycle structure...

Chvátal-Erdos condition and pancyclism

Evelyne FlandrinHao LiAntoni MarczykIngo SchiermeyerMariusz Woźniak — 2006

Discussiones Mathematicae Graph Theory

The well-known Chvátal-Erdős theorem states that if the stability number α of a graph G is not greater than its connectivity then G is hamiltonian. In 1974 Erdős showed that if, additionally, the order of the graph is sufficiently large with respect to α, then G is pancyclic. His proof is based on the properties of cycle-complete graph Ramsey numbers. In this paper we show that a similar result can be easily proved by applying only classical Ramsey numbers.

Arbitrarily vertex decomposable caterpillars with four or five leaves

Sylwia CichaczAgnieszka GörlichAntoni MarczykJakub PrzybyłoMariusz Woźniak — 2006

Discussiones Mathematicae Graph Theory

A graph G of order n is called arbitrarily vertex decomposable if for each sequence (a₁,...,aₖ) of positive integers such that a₁+...+aₖ = n there exists a partition (V₁,...,Vₖ) of the vertex set of G such that for each i ∈ 1,...,k, V i induces a connected subgraph of G on a i vertices. D. Barth and H. Fournier showed that if a tree T is arbitrarily vertex decomposable, then T has maximum degree at most 4. In this paper we give a complete characterization of arbitrarily vertex decomposable caterpillars...

A Note on Neighbor Expanded Sum Distinguishing Index

Evelyne FlandrinHao LiAntoni MarczykJean-François SacléMariusz Woźniak — 2017

Discussiones Mathematicae Graph Theory

A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set [k] = {1, . . . , k}. These colors can be used to distinguish the vertices of G. There are many possibilities of such a distinction. In this paper, we consider the sum of colors on incident edges and adjacent vertices.

Page 1

Download Results (CSV)