Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Sharp upper bounds for a singular perturbation problem related to micromagnetics

Arkady Poliakovsky — 2007

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We construct an upper bound for the following family of functionals { E ε } ε > 0 , which arises in the study of micromagnetics: E ε ( u ) = Ω ε | u | 2 + 1 ε 2 | H u | 2 . Here Ω is a bounded domain in 2 , u H 1 ( Ω , S 1 ) (corresponding to the magnetization) and H u , the demagnetizing field created by u , is given by div ( u ˜ + H u ) = 0 in 2 , curl H u = 0 in 2 , where u ˜ is the extension of u by 0 in 2 Ω . Our upper bound coincides with the lower bound obtained by Rivière and Serfaty.

Upper bounds for singular perturbation problems involving gradient fields

Arkady Poliakovsky — 2007

Journal of the European Mathematical Society

We prove an upper bound for the Aviles–Giga problem, which involves the minimization of the energy E ε ( v ) = ε Ω | 2 v | 2 d x + ε 1 Ω ( 1 | v | 2 ) 2 d x over v H 2 ( Ω ) , where ε > 0 is a small parameter. Given v W 1 , ( Ω ) such that v B V and | v | = 1 a.e., we construct a family { v ε } satisfying: v ε v in W 1 , p ( Ω ) and E ε ( v ε ) 1 3 J v | + v v | 3 d N 1 as ε goes to 0.

Upper bounds for a class of energies containing a non-local term

Arkady Poliakovsky — 2010

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we construct upper bounds for families of functionals of the form E ε ( φ ) : = Ω ε | φ | 2 + 1 ε W ( φ ) d x + 1 ε N | H ¯ F ( φ ) | 2 d x where Δ H ¯ u = div { χ Ω u}. Particular cases of such functionals arise in Micromagnetics. We also use our technique to construct upper bounds for functionals that appear in a variational formulation of the method of vanishing viscosity for conservation laws.

Page 1

Download Results (CSV)