Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Differential overconvergence

Alexandru BuiumArnab Saha — 2011

Banach Center Publications

We prove that some of the basic differential functions appearing in the (unramified) theory of arithmetic differential equations, especially some of the basic differential modular forms in that theory, arise from a "ramified situation". This property can be viewed as a special kind of overconvergence property. One can also go in the opposite direction by using differential functions that arise in a ramified situation to construct "new" (unramified) differential functions.

Page 1

Download Results (CSV)