Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

Edge colorings and total colorings of integer distance graphs

Arnfried KemnitzMassimiliano Marangio — 2002

Discussiones Mathematicae Graph Theory

An integer distance graph is a graph G(D) with the set Z of integers as vertex set and two vertices u,v ∈ Z are adjacent if and only if |u-v| ∈ D where the distance set D is a subset of the positive integers N. In this note we determine the chromatic index, the choice index, the total chromatic number and the total choice number of all integer distance graphs, and the choice number of special integer distance graphs.

Graphs with rainbow connection number two

Arnfried KemnitzIngo Schiermeyer — 2011

Discussiones Mathematicae Graph Theory

An edge-coloured graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colours. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow connected. In this paper we prove that rc(G) = 2 for every connected graph G of order n and size m, where n - 1 2 + 1 m n 2 - 1 . We also characterize graphs with rainbow connection number two and large clique number.

Fractional (P,Q)-Total List Colorings of Graphs

Arnfried KemnitzPeter MihókMargit Voigt — 2013

Discussiones Mathematicae Graph Theory

Let r, s ∈ N, r ≥ s, and P and Q be two additive and hereditary graph properties. A (P,Q)-total (r, s)-coloring of a graph G = (V,E) is a coloring of the vertices and edges of G by s-element subsets of Zr such that for each color i, 0 ≤ i ≤ r − 1, the vertices colored by subsets containing i induce a subgraph of G with property P, the edges colored by subsets containing i induce a subgraph of G with property Q, and color sets of incident vertices and edges are disjoint. The fractional (P,Q)-total...

Sum List Edge Colorings of Graphs

Arnfried KemnitzMassimiliano MarangioMargit Voigt — 2016

Discussiones Mathematicae Graph Theory

Let G = (V,E) be a simple graph and for every edge e ∈ E let L(e) be a set (list) of available colors. The graph G is called L-edge colorable if there is a proper edge coloring c of G with c(e) ∈ L(e) for all e ∈ E. A function f : E → ℕ is called an edge choice function of G and G is said to be f-edge choosable if G is L-edge colorable for every list assignment L with |L(e)| = f(e) for all e ∈ E. Set size(f) = ∑e∈E f(e) and define the sum choice index χ′sc(G) as the minimum of size(f) over all edge...

Generalized Fractional and Circular Total Colorings of Graphs

Arnfried KemnitzMassimiliano MarangioPeter MihókJanka OravcováRoman Soták — 2015

Discussiones Mathematicae Graph Theory

Let P and Q be additive and hereditary graph properties, r, s ∈ N, r ≥ s, and [ℤr]s be the set of all s-element subsets of ℤr. An (r, s)-fractional (P,Q)-total coloring of G is an assignment h : V (G) ∪ E(G) → [ℤr]s such that for each i ∈ ℤr the following holds: the vertices of G whose color sets contain color i induce a subgraph of G with property P, edges with color sets containing color i induce a subgraph of G with property Q, and the color sets of incident vertices and edges are disjoint. If...

Improved Sufficient Conditions for Hamiltonian Properties

Jens-P. BodeAnika FrickeArnfried Kemnitz — 2015

Discussiones Mathematicae Graph Theory

In 1980 Bondy [2] proved that a (k+s)-connected graph of order n ≥ 3 is traceable (s = −1) or Hamiltonian (s = 0) or Hamiltonian-connected (s = 1) if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least ((k+1)(n+s−1)+1)/2. It is shown in [1] that one can allow exceptional (k+ 1)-sets violating this condition and still implying the considered Hamiltonian property. In this note we generalize this result for s = −1 and s = 0 and graphs that fulfill a certain connectivity condition....

Rainbow Connection In Sparse Graphs

Arnfried KemnitzJakub PrzybyłoIngo SchiermeyerMariusz Woźniak — 2013

Discussiones Mathematicae Graph Theory

An edge-coloured connected graph G = (V,E) is called rainbow-connected if each pair of distinct vertices of G is connected by a path whose edges have distinct colours. The rainbow connection number of G, denoted by rc(G), is the minimum number of colours such that G is rainbow-connected. In this paper we prove that rc(G) ≤ k if |V (G)| = n and for all integers n and k with n − 6 ≤ k ≤ n − 3. We also show that this bound is tight.

Generalized total colorings of graphs

Mieczysław BorowieckiArnfried KemnitzMassimiliano MarangioPeter Mihók — 2011

Discussiones Mathematicae Graph Theory

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let P and Q be additive hereditary properties of graphs. A (P,Q)-total coloring of a simple graph G is a coloring of the vertices V(G) and edges E(G) of G such that for each color i the vertices colored by i induce a subgraph of property P, the edges colored by i induce a subgraph of property Q and incident vertices and edges obtain different colors. In this paper we present...

Page 1

Download Results (CSV)