Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

An introduction to algebraic K-theory

Ausoni, Christian — 2001

Proceedings of the 20th Winter School "Geometry and Physics"

This paper gives an exposition of algebraic K-theory, which studies functors K n : Rings Abelian Groups , n an integer. Classically n = 0 , 1 introduced by Bass in the mid 60’s (based on ideas of Grothendieck and others) and n = 2 introduced by Milnor [Introduction to algebraic K-theory, Annals of Math. Studies, 72, Princeton University Press, 1971: Zbl 0237.18005]. These functors are defined and applications to topological K-theory (Swan), number theory, topology and geometry (the Wall finiteness obstruction to a CW-complex being finite,...

Algebraic K -theory of the first Morava K -theory

Christian AusoniJohn Rognes — 2012

Journal of the European Mathematical Society

For a prime p 5 , we compute the algebraic K -theory modulo p and v 1 of the mod p Adams summand, using topological cyclic homology. On the way, we evaluate its modulo p and v 1 topological Hochschild homology. Using a localization sequence, we also compute the K -theory modulo p and v 1 of the first Morava K -theory.

Page 1

Download Results (CSV)