Currently displaying 1 – 20 of 34

Showing per page

Order by Relevance | Title | Year of publication

SLE et invariance conforme

Jean Bertoin

Séminaire Bourbaki

Les processus de Schramm-Loewner (SLE) induisent des courbes aléatoires du plan complexe, qui vérifient une propriété d’invariance conforme. Ce sont des outils fondamentaux pour la compréhension du comportement asymptotique en régime critique de certains modèles discrets intervenant en physique statistique ; ils ont permis notamment d’établir rigoureusement certaines conjectures importantes dans ce domaine.

Paul Lévy et l’arithmétique des lois de probabilités

Jean Bertoin — 2013

ESAIM: Probability and Statistics

Ce court texte reprend un exposé donné le 15 Décembre 2011 au Laboratoire de Probabilités et Modèles Aléatoires, lors d’une journée en hommage à Paul Lévy. On y rappellera comment des considérations sur l’arithmétique des lois de probabilités ont conduit Lévy à étudier les processus à accroissements indépendants.

The asymptotic behavior of fragmentation processes

Jean Bertoin — 2003

Journal of the European Mathematical Society

The fragmentation processes considered in this work are self-similar Markov processes which are meant to describe the evolution of a mass that falls apart randomly as time passes. We investigate their pathwise asymptotic behavior as t . In the so-called homogeneous case, we first point at a law of large numbers and a central limit theorem for (a modified version of) the empirical distribution of the fragments at time t . These results are reminiscent of those of Asmussen and Kaplan [3] and Biggins...

Page 1 Next

Download Results (CSV)