Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

On path-quasar Ramsey numbers

Binlong LiBo Ning — 2015

Annales UMCS, Mathematica

Let G1 and G2 be two given graphs. The Ramsey number R(G1,G2) is the least integer r such that for every graph G on r vertices, either G contains a G1 or Ḡ contains a G2. Parsons gave a recursive formula to determine the values of R(Pn,K1,m), where Pn is a path on n vertices and K1,m is a star on m+1 vertices. In this note, we study the Ramsey numbers R(Pn,K1,m), where Pn is a linear forest on m vertices. We determine the exact values of R(Pn,K1∨Fm) for the cases m ≤ n and m ≥ 2n, and for the case...

Heavy Subgraphs, Stability and Hamiltonicity

Binlong LiBo Ning — 2017

Discussiones Mathematicae Graph Theory

Let G be a graph. Adopting the terminology of Broersma et al. and Čada, respectively, we say that G is 2-heavy if every induced claw (K1,3) of G contains two end-vertices each one has degree at least |V (G)|/2; and G is o-heavy if every induced claw of G contains two end-vertices with degree sum at least |V (G)| in G. In this paper, we introduce a new concept, and say that G is S-c-heavy if for a given graph S and every induced subgraph G′ of G isomorphic to S and every maximal clique C of G′, every...

On path-quasar Ramsey numbers

Binlong LiBo Ning — 2014

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica

Let G 1 and G 2 be two given graphs. The Ramsey number R ( G 1 , G 2 ) is the least integer r such that for every graph G on r vertices, either G contains a G 1 or G ¯ contains a G 2 . Parsons gave a recursive formula to determine the values of R ( P n , K 1 , m ) , where P n is a path on n vertices and K 1 , m is a star on m + 1 vertices. In this note, we study the Ramsey numbers R ( P n , K 1 F m ) , where F m is a linear forest on m vertices. We determine the exact values of R ( P n , K 1 F m ) for the cases m n and m 2 n , and for the case that F m has no odd component. Moreover, we give a lower...

Heavy subgraph pairs for traceability of block-chains

Binlong LiHajo BroersmaShenggui Zhang — 2014

Discussiones Mathematicae Graph Theory

A graph is called traceable if it contains a Hamilton path, i.e., a path containing all its vertices. Let G be a graph on n vertices. We say that an induced subgraph of G is o−1-heavy if it contains two nonadjacent vertices which satisfy an Ore-type degree condition for traceability, i.e., with degree sum at least n−1 in G. A block-chain is a graph whose block graph is a path, i.e., it is either a P1, P2, or a 2-connected graph, or a graph with at least one cut vertex and exactly two end-blocks....

Forbidden Subgraphs for Hamiltonicity of 1-Tough Graphs

Binlong LiHajo J. BroersmaShenggui Zhang — 2016

Discussiones Mathematicae Graph Theory

A graph G is said to be 1-tough if for every vertex cut S of G, the number of components of G − S does not exceed |S|. Being 1-tough is an obvious necessary condition for a graph to be hamiltonian, but it is not sufficient in general. We study the problem of characterizing all graphs H such that every 1-tough H-free graph is hamiltonian. We almost obtain a complete solution to this problem, leaving H = K1 ∪ P4 as the only open case.

Page 1

Download Results (CSV)