### Optimal regularity for quasilinear equations in stratified nilpotent Lie groups and applications.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Back to Simple Search
# Advanced Search

We prove the hypoellipticity for systems of Hörmander type with constant coefficients in Carnot groups of step 2. This result is used to implement blow-up methods and prove partial regularity for local minimizers of non-convex functionals, and for solutions of non-linear systems which appear in the study of non-isotropic metric structures with scalings. We also establish estimates of the Hausdorff dimension of the singular set.

In this paper we study heat kernels associated with a Carnot group G, endowed with a family of collapsing left-invariant Riemannian metrics σε which converge in the Gromov- Hausdorff sense to a sub-Riemannian structure on G as ε→ 0. The main new contribution are Gaussian-type bounds on the heat kernel for the σε metrics which are stable as ε→0 and extend the previous time-independent estimates in [16]. As an application we study well posedness of the total variation flow of graph surfaces over a...

**Page 1**