Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

An energy-preserving Discrete Element Method for elastodynamics

Laurent MonasseChristian Mariotti — 2012

ESAIM: Mathematical Modelling and Numerical Analysis

We develop a Discrete Element Method (DEM) for elastodynamics using polyhedral elements. We show that for a given choice of forces and torques, we recover the equations of linear elastodynamics in small deformations. Furthermore, the torques and forces derive from a potential energy, and thus the global equation is an Hamiltonian dynamics. The use of an explicit symplectic time integration scheme allows us to recover conservation of energy, and thus stability over long time simulations. These theoretical...

An energy-preserving Discrete Element Method for elastodynamics

Laurent MonasseChristian Mariotti — 2012

ESAIM: Mathematical Modelling and Numerical Analysis

We develop a Discrete Element Method (DEM) for elastodynamics using polyhedral elements. We show that for a given choice of forces and torques, we recover the equations of linear elastodynamics in small deformations. Furthermore, the torques and forces derive from a potential energy, and thus the global equation is an Hamiltonian dynamics. The use of an explicit symplectic time integration scheme allows us to recover conservation of energy, and thus stability over long time simulations. These theoretical...

Page 1

Download Results (CSV)