Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

On the mixed problem for quasilinear partial functional differential equations with unbounded delay

Tomasz Człapiński — 1999

Annales Polonici Mathematici

We consider the mixed problem for the quasilinear partial functional differential equation with unbounded delay D t z ( t , x ) = i = 1 n f i ( t , x , z ( t , x ) ) D x i z ( t , x ) + h ( t , x , z ( t , x ) ) , where z ( t , x ) X ̶ 0 is defined by z ( t , x ) ( τ , s ) = z ( t + τ , x + s ) , ( τ , s ) ( - , 0 ] × [ 0 , r ] , and the phase space X ̶ 0 satisfies suitable axioms. Using the method of bicharacteristics and the fixed-point method we prove a theorem on the local existence and uniqueness of Carathéodory solutions of the mixed problem.

On the local Cauchy problem for nonlinear hyperbolic functional differential equations

Tomasz Człapiński — 1997

Annales Polonici Mathematici

We consider the local initial value problem for the hyperbolic partial functional differential equation of the first order (1) D z ( x , y ) = f ( x , y , z ( x , y ) , ( W z ) ( x , y ) , D y z ( x , y ) ) on E, (2) z(x,y) = ϕ(x,y) on [-τ₀,0]×[-b,b], where E is the Haar pyramid and τ₀ ∈ ℝ₊, b = (b₁,...,bₙ) ∈ ℝⁿ₊. Using the method of bicharacteristics and the method of successive approximations for a certain functional integral system we prove, under suitable assumptions, a theorem on the local existence of weak solutions of the problem (1),(2).

On the mixed problem for hyperbolic partial differential-functional equations of the first order

Tomasz Człapiński — 1999

Czechoslovak Mathematical Journal

We consider the mixed problem for the hyperbolic partial differential-functional equation of the first order D x z ( x , y ) = f ( x , y , z ( x , y ) , D y z ( x , y ) ) , where z ( x , y ) [ - τ , 0 ] × [ 0 , h ] is a function defined by z ( x , y ) ( t , s ) = z ( x + t , y + s ) , ( t , s ) [ - τ , 0 ] × [ 0 , h ] . Using the method of bicharacteristics and the method of successive approximations for a certain integral-functional system we prove, under suitable assumptions, a theorem of the local existence of generalized solutions of this problem.

Page 1

Download Results (CSV)