Uno dei metodi migliori per scoprire le proprietà di un cappio chiuso è studiarne il gruppo di moltiplicazione [3], [4]. In questo breve saggio descriviamo i gruppi di moltiplicazione di una classe importante di cappi, e cioè di quella dei cappi flessibili che posseggono la proprietà inversa.

Commutative Moufang loops were amongst the first (nonassociative) loops to be investigated; a great deal is known about their structure. More generally, the interplay of commutativity and associativity in (not necessarily commutative) Moufang loops is well known, e.g., the many associator identities and inner mapping identities involving commutant elements, especially those involving the exponent three. Here, we investigate all of this in the variety of Bol loops.

In a series of papers from the 1940’s and 1950’s, R.H. Bruck and L.J. Paige developed a provocative line of research detailing the similarities between two important classes of loops: the diassociative A-loops and the Moufang loops ([1]). Though they did not publish any classification theorems, in 1958, Bruck’s colleague, J.M. Osborn, managed to show that diassociative, commutative A-loops are Moufang ([5]). In [2] we relaunched this now over 50 year old program by examining conditions under which...

Subnormal subgroups possessing connected transversals are briefly discussed.

We give new equations that axiomatize the variety of trimedial quasigroups. We also improve a standard characterization by showing that right semimedial, left F-quasigroups are trimedial.

In Kepka T., Kinyon M.K., Phillips J.D., , , we showed that every loop isotopic to an F-quasigroup is a Moufang loop. Here we characterize, via two simple identities, the class of F-quasigroups which are isotopic to groups. We call these quasigroups FG-quasigroups. We show that FG-quasigroups are linear over groups. We then use this fact to describe their structure. This gives us, for instance, a complete description of the simple FG-quasigroups. Finally, we show an equivalence of equational classes...

In Kepka T., Kinyon M.K., Phillips J.D., , J. Algebra (2007), 435–461, we showed that every F-quasigroup is linear over a special kind of Moufang loop called an NK-loop. Here we extend this relationship by showing an equivalence between the class of (pointed) F-quasigroups and the class corresponding to a certain notion of generalized module (with noncommutative, nonassociative addition) for an associative ring.

A construction is given, in a variety of groups, of a ``functorial center'' called the endocenter. The endocenter facilitates the identification of universal multiplication groups of groups in the variety, addressing the problem of determining when combinatorial multiplication groups are universal.

The paper studies multilinear algebras, known as comtrans algebras, that are determined by so-called $T$-Hermitian matrices over an arbitrary field. The main result of this paper shows that the comtrans algebra of $n$-dimensional $T$-Hermitian matrices furnishes a simple comtrans algebra.

Groups are usually axiomatized as algebras with an associative binary operation, a two-sided neutral element, and with two-sided inverses. We show in this note that the same simplicity of axioms can be achieved for some of the most important varieties of loops. In particular, we investigate loops of Bol-Moufang type in the underlying variety of magmas with two-sided inverses, and obtain ``group-like'' equational bases for Moufang, Bol and C-loops. We also discuss the case when the inverses are only...

Download Results (CSV)