Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Tame stacks in positive characteristic

Dan AbramovichMartin OlssonAngelo Vistoli — 2008

Annales de l’institut Fourier

We introduce and study a class of algebraic stacks with finite inertia in positive and mixed characteristic, which we call tame algebraic stacks. They include tame Deligne-Mumford stacks, and are arguably better behaved than general Deligne-Mumford stacks. We also give a complete characterization of finite flat linearly reductive schemes over an arbitrary base. Our main result is that tame algebraic stacks are étale locally quotient by actions of linearly reductive finite group schemes.

Comparison theorems for Gromov–Witten invariants of smooth pairs and of degenerations

Dan AbramovichSteffen MarcusJonathan Wise — 2014

Annales de l’institut Fourier

We consider four approaches to relative Gromov–Witten theory and Gromov–Witten theory of degenerations: J. Li’s original approach, B. Kim’s logarithmic expansions, Abramovich–Fantechi’s orbifold expansions, and a logarithmic theory without expansions due to Gross–Siebert and Abramovich–Chen. We exhibit morphisms relating these moduli spaces and prove that their virtual fundamental classes are compatible by pushforward through these morphisms. This implies that the Gromov–Witten invariants associated...

Page 1

Download Results (CSV)