Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Some questions of Arhangel'skii on rotoids

Harold BennettDennis BurkeDavid Lutzer — 2012

Fundamenta Mathematicae

A rotoid is a space X with a special point e ∈ X and a homeomorphism F: X² → X² having F(x,x) = (x,e) and F(e,x) = (e,x) for every x ∈ X. If any point of X can be used as the point e, then X is called a strong rotoid. We study some general properties of rotoids and prove that the Sorgenfrey line is a strong rotoid, thereby answering several questions posed by A. V. Arhangel'skii, and we pose further questions.

Diagonals and discrete subsets of squares

Dennis BurkeVladimir Vladimirovich Tkachuk — 2013

Commentationes Mathematicae Universitatis Carolinae

In 2008 Juhász and Szentmiklóssy established that for every compact space X there exists a discrete D X × X with | D | = d ( X ) . We generalize this result in two directions: the first one is to prove that the same holds for any Lindelöf Σ -space X and hence X ω is d -separable. We give an example of a countably compact space X such that X ω is not d -separable. On the other hand, we show that for any Lindelöf p -space X there exists a discrete subset D X × X such that Δ = { ( x , x ) : x X } D ¯ ; in particular, the diagonal Δ is a retract of D ¯ and the projection...

Weak-bases and D -spaces

Dennis K. Burke — 2007

Commentationes Mathematicae Universitatis Carolinae

It is shown that certain weak-base structures on a topological space give a D -space. This solves the question by A.V. Arhangel’skii of when quotient images of metric spaces are D -spaces. A related result about symmetrizable spaces also answers a question of Arhangel’skii. Hence, quotient mappings, with compact fibers, from metric spaces have a D -space image. What about quotient s -mappings? Arhangel’skii and Buzyakova have shown that spaces with a point-countable base are D -spaces...

Page 1

Download Results (CSV)