Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

A vanishing theorem for twisted Alexander polynomials with applications to symplectic 4-manifolds

Stefan FriedlStefano Vidussi — 2013

Journal of the European Mathematical Society

In this paper we show that given any 3-manifold N and any non-fibered class in H 1 ( N ; Z ) there exists a representation such that the corresponding twisted Alexander polynomial is zero. We obtain this result by extending earlier work of ours and by combining this with recent results of Agol and Wise on separability of 3-manifold groups. This result allows us to completely classify symplectic 4-manifolds with a free circle action, and to determine their symplectic cones.

Twisted Alexander polynomials, symplectic 4-manifolds and surfaces of minimal complexity

Stefan FriedlStefano Vidussi — 2009

Banach Center Publications

Let M be a 4-manifold which admits a free circle action. We use twisted Alexander polynomials to study the existence of symplectic structures and the minimal complexity of surfaces in M. The results on the existence of symplectic structures summarize previous results of the authors in [FV08a,FV08,FV07]. The results on surfaces of minimal complexity are new.

Page 1

Download Results (CSV)