Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

A note on a conjecture of Jeśmanowicz

Moujie DengG. Cohen — 2000

Colloquium Mathematicae

Let a, b, c be relatively prime positive integers such that a 2 + b 2 = c 2 . Jeśmanowicz conjectured in 1956 that for any given positive integer n the only solution of ( a n ) x + ( b n ) y = ( c n ) z in positive integers is x=y=z=2. If n=1, then, equivalently, the equation ( u 2 - v 2 ) x + ( 2 u v ) y = ( u 2 + v 2 ) z , for integers u>v>0, has only the solution x=y=z=2. We prove that this is the case when one of u, v has no prime factor of the form 4l+1 and certain congruence and inequality conditions on u, v are satisfied.

An Extension of the Auxiliary Problem Principle to Nonsymmetric Auxiliary Operators

A. RenaudG. Cohen — 2010

ESAIM: Control, Optimisation and Calculus of Variations

To find a zero of a maximal monotone operator, an extension of the Auxiliary Problem Principle to nonsymmetric auxiliary operators is proposed. The main convergence result supposes a relationship between the main operator and the nonsymmetric component of the auxiliary operator. When applied to the particular case of convex-concave functions, this result implies the convergence of the parallel version of the Arrow-Hurwicz algorithm under the assumptions of Lipschitz and partial Dunn properties...

Page 1

Download Results (CSV)