Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Chebyshev bounds for Beurling numbers

Harold G. DiamondWen-Bin Zhang — 2013

Acta Arithmetica

The first author conjectured that Chebyshev-type prime bounds hold for Beurling generalized numbers provided that the counting function N(x) of the generalized integers satisfies the L¹ condition 1 | N ( x ) - A x | d x / x 2 < for some positive constant A. This conjecture was shown false by an example of Kahane. Here we establish the Chebyshev bounds using the L¹ hypothesis and a second integral condition.

Optimality of Chebyshev bounds for Beurling generalized numbers

Harold G. DiamondWen-Bin Zhang — 2013

Acta Arithmetica

If the counting function N(x) of integers of a Beurling generalized number system satisfies both 1 x - 2 | N ( x ) - A x | d x < and x - 1 ( l o g x ) ( N ( x ) - A x ) = O ( 1 ) , then the counting function π(x) of the primes of this system is known to satisfy the Chebyshev bound π(x) ≪ x/logx. Let f(x) increase to infinity arbitrarily slowly. We give a construction showing that 1 | N ( x ) - A x | x - 2 d x < and x - 1 ( l o g x ) ( N ( x ) - A x ) = O ( f ( x ) ) do not imply the Chebyshev bound.

Oscillation of Mertens’ product formula

Harold G. DiamondJanos Pintz — 2009

Journal de Théorie des Nombres de Bordeaux

Mertens’ product formula asserts that p x 1 - 1 p log x e - γ as x . Calculation shows that the right side of the formula exceeds the left side for 2 x 10 8 . It was suggested by Rosser and Schoenfeld that, by analogy with Littlewood’s result on π ( x ) - li x , this and a complementary inequality might change their sense for sufficiently large values of x . We show this to be the case.

Page 1

Download Results (CSV)