Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

On integers not of the form n - φ (n)

J. BrowkinA. Schinzel — 1995

Colloquium Mathematicae

W. Sierpiński asked in 1959 (see [4], pp. 200-201, cf. [2]) whether there exist infinitely many positive integers not of the form n - φ(n), where φ is the Euler function. We answer this question in the affirmative by proving Theorem. None of the numbers 2 k · 509203 (k = 1, 2,...) is of the form n - φ(n).

Prime factors of values of polynomials

J. BrowkinA. Schinzel — 2011

Colloquium Mathematicae

We prove that for every quadratic binomial f(x) = rx² + s ∈ ℤ[x] there are pairs ⟨a,b⟩ ∈ ℕ² such that a ≠ b, f(a) and f(b) have the same prime factors and min{a,b} is arbitrarily large. We prove the same result for every monic quadratic trinomial over ℤ.

Page 1

Download Results (CSV)