Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Vertex-distinguishing edge-colorings of linear forests

Sylwia CichaczJakub Przybyło — 2010

Discussiones Mathematicae Graph Theory

In the PhD thesis by Burris (Memphis (1993)), a conjecture was made concerning the number of colors c(G) required to edge-color a simple graph G so that no two distinct vertices are incident to the same multiset of colors. We find the exact value of c(G) - the irregular coloring number, and hence verify the conjecture when G is a vertex-disjoint union of paths. We also investigate the point-distinguishing chromatic index, χ₀(G), where sets, instead of multisets, are required to be distinct, and...

On An Extremal Problem In The Class Of Bipartite 1-Planar Graphs

Július CzapJakub PrzybyłoErika Škrabuľáková — 2016

Discussiones Mathematicae Graph Theory

A graph G = (V, E) is called 1-planar if it admits a drawing in the plane such that each edge is crossed at most once. In this paper, we study bipartite 1-planar graphs with prescribed numbers of vertices in partite sets. Bipartite 1-planar graphs are known to have at most 3n − 8 edges, where n denotes the order of a graph. We show that maximal-size bipartite 1-planar graphs which are almost balanced have not significantly fewer edges than indicated by this upper bound, while the same is not true...

Rainbow Connection In Sparse Graphs

Arnfried KemnitzJakub PrzybyłoIngo SchiermeyerMariusz Woźniak — 2013

Discussiones Mathematicae Graph Theory

An edge-coloured connected graph G = (V,E) is called rainbow-connected if each pair of distinct vertices of G is connected by a path whose edges have distinct colours. The rainbow connection number of G, denoted by rc(G), is the minimum number of colours such that G is rainbow-connected. In this paper we prove that rc(G) ≤ k if |V (G)| = n and for all integers n and k with n − 6 ≤ k ≤ n − 3. We also show that this bound is tight.

Arbitrarily vertex decomposable caterpillars with four or five leaves

Sylwia CichaczAgnieszka GörlichAntoni MarczykJakub PrzybyłoMariusz Woźniak — 2006

Discussiones Mathematicae Graph Theory

A graph G of order n is called arbitrarily vertex decomposable if for each sequence (a₁,...,aₖ) of positive integers such that a₁+...+aₖ = n there exists a partition (V₁,...,Vₖ) of the vertex set of G such that for each i ∈ 1,...,k, V i induces a connected subgraph of G on a i vertices. D. Barth and H. Fournier showed that if a tree T is arbitrarily vertex decomposable, then T has maximum degree at most 4. In this paper we give a complete characterization of arbitrarily vertex decomposable caterpillars...

Page 1

Download Results (CSV)