Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Onq-Power Cycles in Cubic Graphs

Julien Bensmail — 2017

Discussiones Mathematicae Graph Theory

In the context of a conjecture of Erdős and Gyárfás, we consider, for any q ≥ 2, the existence of q-power cycles (i.e., with length a power of q) in cubic graphs. We exhibit constructions showing that, for every q ≥ 3, there exist arbitrarily large cubic graphs with no q-power cycles. Concerning the remaining case q = 2 (which corresponds to the conjecture of Erdős and Gyárfás), we show that there exist arbitrarily large cubic graphs whose all 2-power cycles have length 4 only, or 8 only.

An Oriented Version of the 1-2-3 Conjecture

Olivier BaudonJulien BensmailÉric Sopena — 2015

Discussiones Mathematicae Graph Theory

The well-known 1-2-3 Conjecture addressed by Karoński, Luczak and Thomason asks whether the edges of every undirected graph G with no isolated edge can be assigned weights from {1, 2, 3} so that the sum of incident weights at each vertex yields a proper vertex-colouring of G. In this work, we consider a similar problem for oriented graphs. We show that the arcs of every oriented graph −G⃗ can be assigned weights from {1, 2, 3} so that every two adjacent vertices of −G⃗ receive distinct sums of outgoing...

Structural Properties of Recursively Partitionable Graphs with Connectivity 2

Olivier BaudonJulien BensmailFlorent FoucaudMonika Pilśniak — 2017

Discussiones Mathematicae Graph Theory

A connected graph G is said to be arbitrarily partitionable (AP for short) if for every partition (n1, . . . , np) of |V (G)| there exists a partition (V1, . . . , Vp) of V (G) such that each Vi induces a connected subgraph of G on ni vertices. Some stronger versions of this property were introduced, namely the ones of being online arbitrarily partitionable and recursively arbitrarily partitionable (OL-AP and R-AP for short, respectively), in which the subgraphs induced by a partition of G must...

Page 1

Download Results (CSV)