### Algebras and Quaternion Defect Groups. II.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Back to Simple Search
# Advanced Search

We show that any block of a group algebra of some finite group which is of wild representation type has many families of stable tubes.

We describe the representation-infinite blocks B of the group algebras KG of finite groups G over algebraically closed fields K for which all simple modules are periodic with respect to the action of the syzygy operators. In particular, we prove that all such blocks B are periodic algebras of period 4. This confirms the periodicity conjecture for blocks of group algebras.

In our recent paper (J. Algebra 345 (2011)) we prove that the deformed preprojective algebras of generalized Dynkin type ₙ (in the sense of our earlier work in Trans. Amer Math. Soc. 359 (2007)) are exactly (up to isomorphism) the stable Auslander algebras of simple plane singularities of Dynkin type ${}_{2n}$. In this article we complete the picture by showing that the deformed mesh algebras of Dynkin type ℂₙ are isomorphic to the canonical mesh algebras of type ℂₙ, and hence to the stable Auslander algebras...

Let A be a finite-dimensional algebra which is quasi-hereditary with respect to the poset (Λ, ≤), with standard modules Δ(λ) for λ ∈ Λ. Let ℱ(Δ) be the category of A-modules which have filtrations where the quotients are standard modules. We determine some inductive results on the relative Auslander-Reiten quiver of ℱ(Δ).

**Page 1**