Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Representations of the direct product of matrix algebras

Daniele GuidoLars Tuset — 2001

Fundamenta Mathematicae

Suppose B is a unital algebra which is an algebraic product of full matrix algebras over an index set X. A bijection is set up between the equivalence classes of irreducible representations of B as operators on a Banach space and the σ-complete ultrafilters on X (Theorem 2.6). Therefore, if X has less than measurable cardinality (e.g. accessible), the equivalence classes of the irreducible representations of B are labeled by points of X, and all representations of B are described (Theorem 3.3).

Page 1

Download Results (CSV)