Currently displaying 1 – 20 of 23

Showing per page

Order by Relevance | Title | Year of publication

Unit tangent sphere bundles with constant scalar curvature

Eric BoeckxLieven Vanhecke — 2001

Czechoslovak Mathematical Journal

As a first step in the search for curvature homogeneous unit tangent sphere bundles we derive necessary and sufficient conditions for a manifold to have a unit tangent sphere bundle with constant scalar curvature. We give complete classifications for low dimensions and for conformally flat manifolds. Further, we determine when the unit tangent sphere bundle is Einstein or Ricci-parallel.

Harmonie reflections

Lieven VanheckeMaria-Elena Vazquez-Abal — 1988

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We study local reflections ϕ σ with respect to a curve σ in a Riemannian manifold and prove that σ is a geodesic if ϕ σ is a harmonic map. Moreover, we prove that the Riemannian manifold has constant curvature if and only if ϕ σ is harmonic for all geodesies σ .

Locally symmetric immersions

José Carmelo González-DávilaLieven Vanhecke — 1999

Czechoslovak Mathematical Journal

We use reflections with respect to submanifolds and related geometric results to develop, inspired by the work of Ferus and other authors, in a unified way a local theory of extrinsic symmetric immersions and submanifolds in a general analytic Riemannian manifold and in locally symmetric spaces. In particular we treat the case of real and complex space forms and study additional relations with holomorphic and symplectic reflections when the ambient space is almost Hermitian. The global case is also...

Page 1 Next

Download Results (CSV)