Currently displaying 1 – 20 of 29

Showing per page

Order by Relevance | Title | Year of publication

On the use of explicit bounds on residues of Dedekind zeta functions taking into account the behavior of small primes

Stéphane Louboutin — 2005

Journal de Théorie des Nombres de Bordeaux

Lately, explicit upper bounds on | L ( 1 , χ ) | (for primitive Dirichlet characters χ ) taking into account the behaviors of χ on a given finite set of primes have been obtained. This yields explicit upper bounds on residues of Dedekind zeta functions of abelian number fields taking into account the behavior of small primes, and it as been explained how such bounds yield improvements on lower bounds of relative class numbers of CM-fields whose maximal totally real subfields are abelian. We present here some other...

The mean value of |L(k,χ)|² at positive rational integers k ≥ 1

Stéphane Louboutin — 2001

Colloquium Mathematicae

Let k ≥ 1 denote any positive rational integer. We give formulae for the sums S o d d ( k , f ) = χ ( - 1 ) = - 1 | L ( k , χ ) | ² (where χ ranges over the ϕ(f)/2 odd Dirichlet characters modulo f > 2) whenever k ≥ 1 is odd, and for the sums S e v e n ( k , f ) = χ ( - 1 ) = + 1 | L ( k , χ ) | ² (where χ ranges over the ϕ(f)/2 even Dirichlet characters modulo f>2) whenever k ≥ 1 is even.

Simple proofs of the Siegel-Tatuzawa and Brauer-Siegel theorems

Stéphane R. Louboutin — 2007

Colloquium Mathematicae

We give a simple proof of the Siegel-Tatuzawa theorem according to which the residues at s = 1 of the Dedekind zeta functions of quadratic number fields are effectively not too small, with at most one exceptional quadratic field. We then give a simple proof of the Brauer-Siegel theorem for normal number fields which gives the asymptotics for the logarithm of the product of the class number and the regulator of number fields.

Fundamental units for orders of unit rank 1 and generated by a unit

Stéphane R. Louboutin — 2016

Banach Center Publications

Let ε be an algebraic unit for which the rank of the group of units of the order ℤ[ε] is equal to 1. Assume that ε is not a complex root of unity. It is natural to wonder whether ε is a fundamental unit of this order. It turns out that the answer is in general yes, and that a fundamental unit of this order can be explicitly given (as an explicit polynomial in ε) in the rare cases when the answer is no. This paper is a self-contained exposition of the solution to this problem, solution which was...

Page 1 Next

Download Results (CSV)