Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Root growth: homogenization in domains with time dependent partial perforations

Yves CapdeboscqMariya Ptashnyk — 2012

ESAIM: Control, Optimisation and Calculus of Variations

In this article we derive a macroscopic model for the time evolution of root density, starting from a discrete mesh of roots, using homogenization techniques. In the microscopic model each root grows vertically according to an ordinary differential equation. The roots growth rates depend on the spatial distribution of nutrient in the soil, which also evolves in time, leading to a fully coupled non-linear problem. We derive an effective partial differential equation for the root tip surface and for...

Root growth: homogenization in domains with time dependent partial perforations

Yves CapdeboscqMariya Ptashnyk — 2012

ESAIM: Control, Optimisation and Calculus of Variations

In this article we derive a macroscopic model for the time evolution of root density, starting from a discrete mesh of roots, using homogenization techniques. In the microscopic model each root grows vertically according to an ordinary differential equation. The roots growth rates depend on the spatial distribution of nutrient in the soil, which also evolves in time, leading to a fully coupled non-linear problem. We derive an effective partial differential equation for the root tip surface and for...

Root growth: homogenization in domains with time dependent partial perforations

Yves CapdeboscqMariya Ptashnyk — 2012

ESAIM: Control, Optimisation and Calculus of Variations

In this article we derive a macroscopic model for the time evolution of root density, starting from a discrete mesh of roots, using homogenization techniques. In the microscopic model each root grows vertically according to an ordinary differential equation. The roots growth rates depend on the spatial distribution of nutrient in the soil, which also evolves in time, leading to a fully coupled non-linear problem. We derive an effective partial differential equation for the root tip surface and for...

Page 1

Download Results (CSV)