Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Distance-Locally Disconnected Graphs

Mirka MillerJoe RyanZdeněk Ryjáček — 2013

Discussiones Mathematicae Graph Theory

For an integer k ≥ 1, we say that a (finite simple undirected) graph G is k-distance-locally disconnected, or simply k-locally disconnected if, for any x ∈ V (G), the set of vertices at distance at least 1 and at most k from x induces in G a disconnected graph. In this paper we study the asymptotic behavior of the number of edges of a k-locally disconnected graph on n vertices. For general graphs, we show that this number is Θ(n2) for any fixed value of k and, in the special case of regular graphs,...

Further results on sequentially additive graphs

Suresh Manjanath HegdeMirka Miller — 2007

Discussiones Mathematicae Graph Theory

Given a graph G with p vertices, q edges and a positive integer k, a k-sequentially additive labeling of G is an assignment of distinct numbers k,k+1,k+2,...,k+p+q-1 to the p+q elements of G so that every edge uv of G receives the sum of the numbers assigned to the vertices u and v. A graph which admits such an assignment to its elements is called a k-sequentially additive graph. In this paper, we give an upper bound for k with respect to which the given graph may possibly be k-sequentially additive...

Vertex-antimagic total labelings of graphs

Martin BačaJames A. MacDougallFrançois BertaultMirka MillerRinovia SimanjuntakSlamin — 2003

Discussiones Mathematicae Graph Theory

In this paper we introduce a new type of graph labeling for a graph G(V,E) called an (a,d)-vertex-antimagic total labeling. In this labeling we assign to the vertices and edges the consecutive integers from 1 to |V|+|E| and calculate the sum of labels at each vertex, i.e., the vertex label added to the labels on its incident edges. These sums form an arithmetical progression with initial term a and common difference d. We investigate basic properties of these labelings, show...

Page 1

Download Results (CSV)