Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Large deviations for independent random variables – Application to Erdös-Renyi’s functional law of large numbers

Jamal Najim — 2005

ESAIM: Probability and Statistics

A Large Deviation Principle (LDP) is proved for the family 1 n 1 n 𝐟 ( x i n ) · Z i n where the deterministic probability measure 1 n 1 n δ x i n converges weakly to a probability measure R and ( Z i n ) i are d -valued independent random variables whose distribution depends on x i n and satisfies the following exponential moments condition: sup i , n 𝔼 e α * | Z i n | < + forsome 0 < α * < + . In this context, the identification of the rate function is non-trivial due to the absence of equidistribution. We rely on fine convex analysis to address this issue. Among the applications...

Large deviations for independent random variables – Application to Erdös-Renyi's functional law of large numbers

Jamal Najim — 2010

ESAIM: Probability and Statistics

A Large Deviation Principle (LDP) is proved for the family 1 n 1 n 𝐟 ( x i n ) · Z i n where the deterministic probability measure 1 n 1 n δ x i n converges weakly to a probability measure R and ( Z i n ) i are d -valued independent random variables whose distribution depends on x i n and satisfies the following exponential moments condition: sup i , n 𝔼 e α * | Z i n | < + forsome 0 < α * < + . In this context, the identification of the rate function is non-trivial due to the absence of equidistribution. We rely on fine convex analysis to address...

On bilinear forms based on the resolvent of large random matrices

Walid HachemPhilippe LoubatonJamal NajimPascal Vallet — 2013

Annales de l'I.H.P. Probabilités et statistiques

Consider a N × n non-centered matrix 𝛴 n with a separable variance profile: 𝛴 n = D n 1 / 2 X n D ˜ n 1 / 2 n + A n . Matrices D n and D ˜ n are non-negative deterministic diagonal, while matrix A n is deterministic, and X n is a random matrix with complex independent and identically distributed random variables, each with mean zero and variance one. Denote by Q n ( z ) the resolvent associated to 𝛴 n 𝛴 n * , i.e. Q n ( z ) = 𝛴 n 𝛴 n * - z I N - 1 . Given two sequences of deterministic vectors ( u n ) and ( v n ) with bounded Euclidean norms, we study the limiting behavior of the random bilinear form: u n * Q n ( z ) v n z - + , as the dimensions...

Page 1

Download Results (CSV)