Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Amenability properties of Fourier algebras and Fourier-Stieltjes algebras: a survey

Nico Spronk — 2010

Banach Center Publications

Let G be a locally compact group, and let A(G) and B(G) denote its Fourier and Fourier-Stieltjes algebras. These algebras are dual objects of the group and measure algebras, L - 1 ( G ) and M(G), in a sense which generalizes the Pontryagin duality theorem on abelian groups. We wish to consider the amenability properties of A(G) and B(G) and compare them to such properties for L - 1 ( G ) and M(G). For us, “amenability properties” refers to amenability, weak amenability, and biflatness, as well as some properties which...

Beurling-Figà-Talamanca-Herz algebras

Serap ÖztopVolker RundeNico Spronk — 2012

Studia Mathematica

For a locally compact group G and p ∈ (1,∞), we define and study the Beurling-Figà-Talamanca-Herz algebras A p ( G , ω ) . For p = 2 and abelian G, these are precisely the Beurling algebras on the dual group Ĝ. For p = 2 and compact G, our approach subsumes an earlier one by H. H. Lee and E. Samei. The key to our approach is not to define Beurling algebras through weights, i.e., possibly unbounded continuous functions, but rather through their inverses, which are bounded continuous functions. We prove that...

Convolutions on compact groups and Fourier algebras of coset spaces

Brian E. ForrestEbrahim SameiNico Spronk — 2010

Studia Mathematica

We study two related questions. (1) For a compact group G, what are the ranges of the convolution maps on A(G × G) given for u,v in A(G) by u × v ↦ u*v̌ (v̌(s) = v(s^-1)) and u × v ↦ u*v? (2) For a locally compact group G and a compact subgroup K, what are the amenability properties of the Fourier algebra of the coset space A(G/K)? The algebra A(G/K) was defined and studied by the first named author. In answering the first question, we obtain, for compact groups which do not...

Operator Segal algebras in Fourier algebras

Brian E. ForrestNico SpronkPeter J. Wood — 2007

Studia Mathematica

Let G be a locally compact group, A(G) its Fourier algebra and L¹(G) the space of Haar integrable functions on G. We study the Segal algebra S¹A(G) = A(G) ∩ L¹(G) in A(G). It admits an operator space structure which makes it a completely contractive Banach algebra. We compute the dual space of S¹A(G). We use it to show that the restriction operator u u | H : S ¹ A ( G ) A ( H ) , for some non-open closed subgroups H, is a surjective complete quotient map. We also show that if N is a non-compact closed subgroup, then the averaging...

Page 1

Download Results (CSV)