Currently displaying 1 – 13 of 13

Showing per page

Order by Relevance | Title | Year of publication

On upper traceable numbers of graphs

Futaba OkamotoPing Zhang — 2008

Mathematica Bohemica

For a connected graph G of order n 2 and a linear ordering s : v 1 , v 2 , ... , v n of vertices of G , d ( s ) = i = 1 n - 1 d ( v i , v i + 1 ) , where d ( v i , v i + 1 ) is the distance between v i and v i + 1 . The upper traceable number t + ( G ) of G is t + ( G ) = max { d ( s ) } , where the maximum is taken over all linear orderings s of vertices of G . It is known that if T is a tree of order n 3 , then 2 n - 3 t + ( T ) n 2 / 2 - 1 and t + ( T ) n 2 / 2 - 3 if T P n . All pairs n , k for which there exists a tree T of order n and t + ( T ) = k are determined and a characterization of all those trees of order n 4 with upper traceable number n 2 / 2 - 3 is established. For a connected graph G of order...

On multiset colorings of graphs

Futaba OkamotoEbrahim SalehiPing Zhang — 2010

Discussiones Mathematicae Graph Theory

A vertex coloring of a graph G is a multiset coloring if the multisets of colors of the neighbors of every two adjacent vertices are different. The minimum k for which G has a multiset k-coloring is the multiset chromatic number χₘ(G) of G. For every graph G, χₘ(G) is bounded above by its chromatic number χ(G). The multiset chromatic numbers of regular graphs are investigated. It is shown that for every pair k, r of integers with 2 ≤ k ≤ r - 1, there exists an r-regular graph with multiset chromatic...

The upper traceable number of a graph

Futaba OkamotoPing ZhangVaraporn Saenpholphat — 2008

Czechoslovak Mathematical Journal

For a nontrivial connected graph G of order n and a linear ordering s v 1 , v 2 , ... , v n of vertices of G , define d ( s ) = i = 1 n - 1 d ( v i , v i + 1 ) . The traceable number t ( G ) of a graph G is t ( G ) = min { d ( s ) } and the upper traceable number t + ( G ) of G is t + ( G ) = max { d ( s ) } , where the minimum and maximum are taken over all linear orderings s of vertices of G . We study upper traceable numbers of several classes of graphs and the relationship between the traceable number and upper traceable number of a graph. All connected graphs G for which t + ( G ) - t ( G ) = 1 are characterized and a formula for the upper...

Measures of traceability in graphs

Varaporn SaenpholphatFutaba OkamotoPing Zhang — 2006

Mathematica Bohemica

For a connected graph G of order n 3 and an ordering s v 1 , v 2 , , v n of the vertices of G , d ( s ) = i = 1 n - 1 d ( v i , v i + 1 ) , where d ( v i , v i + 1 ) is the distance between v i and v i + 1 . The traceable number t ( G ) of G is defined by t ( G ) = min d ( s ) , where the minimum is taken over all sequences s of the elements of V ( G ) . It is shown that if G is a nontrivial connected graph of order n such that l is the length of a longest path in G and p is the maximum size of a spanning linear forest in G , then 2 n - 2 - p t ( G ) 2 n - 2 - l and both these bounds are sharp. We establish a formula for the traceable number of...

The local metric dimension of a graph

Futaba OkamotoBryan PhinezyPing Zhang — 2010

Mathematica Bohemica

For an ordered set W = { w 1 , w 2 , ... , w k } of k distinct vertices in a nontrivial connected graph G , the metric code of a vertex v of G with respect to W is the k -vector code ( v ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ) where d ( v , w i ) is the distance between v and w i for 1 i k . The set W is a local metric set of G if code ( u ) code ( v ) for every pair u , v of adjacent vertices of G . The minimum positive integer k for which G has a local metric k -set is the local metric dimension lmd ( G ) of G . A local metric set of G of cardinality lmd ( G ) is a local metric basis of G . We characterize all nontrivial connected...

On γ -labelings of oriented graphs

Futaba OkamotoPing ZhangVaraporn Saenpholphat — 2007

Mathematica Bohemica

Let D be an oriented graph of order n and size m . A γ -labeling of D is a one-to-one function f V ( D ) { 0 , 1 , 2 , ... , m } that induces a labeling f ' E ( D ) { ± 1 , ± 2 , ... , ± m } of the arcs of D defined by f ' ( e ) = f ( v ) - f ( u ) for each arc e = ( u , v ) of D . The value of a γ -labeling f is v a l ( f ) = e E ( G ) f ' ( e ) . A γ -labeling of D is balanced if the value of f is 0. An oriented graph D is balanced if D has a balanced labeling. A graph G is orientably balanced if G has a balanced orientation. It is shown that a connected graph G of order n 2 is orientably balanced unless G is a tree, n 2 ( m o d 4 ) , and every vertex of...

The set chromatic number of a graph

Gary ChartrandFutaba OkamotoCraig W. RasmussenPing Zhang — 2009

Discussiones Mathematicae Graph Theory

For a nontrivial connected graph G, let c: V(G)→ N be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) ≠ NC(v) for every pair u,v of adjacent vertices of G. The minimum number of colors required of such a coloring is called the set chromatic number χₛ(G) of G. The set chromatic numbers of some well-known classes of graphs are determined...

The multiset chromatic number of a graph

Gary ChartrandFutaba OkamotoEbrahim SalehiPing Zhang — 2009

Mathematica Bohemica

A vertex coloring of a graph G is a multiset coloring if the multisets of colors of the neighbors of every two adjacent vertices are different. The minimum k for which G has a multiset k -coloring is the multiset chromatic number χ m ( G ) of G . For every graph G , χ m ( G ) is bounded above by its chromatic number χ ( G ) . The multiset chromatic number is determined for every complete multipartite graph as well as for cycles and their squares, cubes, and fourth powers. It is conjectured that for each k 3 , there exist sufficiently...

Set colorings in perfect graphs

Ralucca GeraFutaba OkamotoCraig RasmussenPing Zhang — 2011

Mathematica Bohemica

For a nontrivial connected graph G , let c : V ( G ) be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v V ( G ) , the neighborhood color set NC ( v ) is the set of colors of the neighbors of v . The coloring c is called a set coloring if NC ( u ) NC ( v ) for every pair u , v of adjacent vertices of G . The minimum number of colors required of such a coloring is called the set chromatic number χ s ( G ) . We show that the decision variant of determining χ s ( G ) is NP-complete in the general case, and show that χ s ( G ) can be...

Set vertex colorings and joins of graphs

Futaba OkamotoCraig W. RasmussenPing Zhang — 2009

Czechoslovak Mathematical Journal

For a nontrivial connected graph G , let c V ( G ) be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G , the neighborhood color set NC ( v ) is the set of colors of the neighbors of v . The coloring c is called a set coloring if NC ( u ) NC ( v ) for every pair u , v of adjacent vertices of G . The minimum number of colors required of such a coloring is called the set chromatic number χ s ( G ) . A study is made of the set chromatic number of the join G + H of two graphs G and H . Sharp lower and upper bounds...

Vertex rainbow colorings of graphs

Futaba Fujie-OkamotoKyle KolasinskiJianwei LinPing Zhang — 2012

Discussiones Mathematicae Graph Theory

In a properly vertex-colored graph G, a path P is a rainbow path if no two vertices of P have the same color, except possibly the two end-vertices of P. If every two vertices of G are connected by a rainbow path, then G is vertex rainbow-connected. A proper vertex coloring of a connected graph G that results in a vertex rainbow-connected graph is a vertex rainbow coloring of G. The minimum number of colors needed in a vertex rainbow coloring of G is the vertex rainbow connection number vrc(G) of...

The k -metric colorings of a graph

Futaba Fujie-OkamotoWillem RenzemaPing Zhang — 2012

Mathematica Bohemica

For a nontrivial connected graph G of order n , the detour distance D ( u , v ) between two vertices u and v in G is the length of a longest u - v path in G . Detour distance is a metric on the vertex set of G . For each integer k with 1 k n - 1 , a coloring c : V ( G ) is a k -metric coloring of G if | c ( u ) - c ( v ) | + D ( u , v ) k + 1 for every two distinct vertices u and v of G . The value χ m k ( c ) of a k -metric coloring c is the maximum color assigned by c to a vertex of G and the k -metric chromatic number χ m k ( G ) of G is the minimum value of a k -metric coloring of G . For every...

Page 1

Download Results (CSV)