Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On the heights of totally p -adic numbers

Paul Fili — 2014

Journal de Théorie des Nombres de Bordeaux

Bombieri and Zannier established lower and upper bounds for the limit infimum of the Weil height in fields of totally p -adic numbers and generalizations thereof. In this paper, we use potential theoretic techniques to generalize the upper bounds from their paper and, under the assumption of integrality, to improve slightly upon their bounds.

A generalization of Dirichlet's unit theorem

Paul FiliZachary Miner — 2014

Acta Arithmetica

We generalize Dirichlet's S-unit theorem from the usual group of S-units of a number field K to the infinite rank group of all algebraic numbers having nontrivial valuations only on places lying over S. Specifically, we demonstrate that the group of algebraic S-units modulo torsion is a ℚ-vector space which, when normed by the Weil height, spans a hyperplane determined by the product formula, and that the elements of this vector space which are linearly independent over ℚ retain their linear independence...

Equidistribution and the heights of totally real and totally p-adic numbers

Paul FiliZachary Miner — 2015

Acta Arithmetica

C. J. Smyth was among the first to study the spectrum of the Weil height in the field of all totally real numbers, establishing both lower and upper bounds for the limit infimum of the height of all totally real integers, and determining isolated values of the height. Later, Bombieri and Zannier established similar results for totally p-adic numbers and, inspired by work of Ullmo and Zhang, termed this the Bogomolov property. In this paper, we use results on equidistribution of points of low height...

Page 1

Download Results (CSV)