Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Bounds and estimates on the effective properties for nonlinear composites

Peter Wall — 2000

Applications of Mathematics

In this paper we derive lower bounds and upper bounds on the effective properties for nonlinear heterogeneous systems. The key result to obtain these bounds is to derive a variational principle, which generalizes the variational principle by P. Ponte Castaneda from 1992. In general, when the Ponte Castaneda variational principle is used one only gets either a lower or an upper bound depending on the growth conditions. In this paper we overcome this problem by using our new variational principle...

A comparison of homogenization, Hashin-Shtrikman bounds and the Halpin-Tsai equations

Peter Wall — 1997

Applications of Mathematics

In this paper we study a unidirectional and elastic fiber composite. We use the homogenization method to obtain numerical results of the plane strain bulk modulus and the transverse shear modulus. The results are compared with the Hashin-Shtrikman bounds and are found to be close to the lower bounds in both cases. This indicates that the lower bounds might be used as a first approximation of the plane strain bulk modulus and the transverse shear modulus. We also point out the connection with the...

Bounds and numerical results for homogenized degenerated p -Poisson equations

Johan ByströmJonas EngströmPeter Wall — 2004

Applications of Mathematics

In this paper we derive upper and lower bounds on the homogenized energy density functional corresponding to degenerated p -Poisson equations. Moreover, we give some non-trivial examples where the bounds are tight and thus can be used as good approximations of the homogenized properties. We even present some cases where the bounds coincide and also compare them with some numerical results.

Page 1

Download Results (CSV)