Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Generalized kinetic equations and effective thermodynamics

Pierre-Henri Chavanis — 2004

Banach Center Publications

We introduce a new class of nonlocal kinetic equations and nonlocal Fokker-Planck equations associated with an effective generalized thermodynamical formalism. These equations have a rich physical and mathematical structure that can describe phase transitions and blow-up phenomena. On general grounds, our formalism can have applications in different domains of physics, astrophysics, hydrodynamics and biology. We find an aesthetic connexion between topics (stars, vortices, bacteries,...) which were...

Gravitational collapse of a Brownian gas

Clément SirePierre-Henri Chavanis — 2004

Banach Center Publications

We investigate a model describing the dynamics of a gas of self-gravitating Brownian particles. This model can also have applications for the chemotaxis of bacterial populations. We focus here on the collapse phase obtained at sufficiently low temperature/energy and on the post-collapse regime following the singular time where the central density diverges. Several analytical results are illustrated by numerical simulations.

On the analogy between self-gravitating Brownian particles and bacterial populations

Pierre-Henri ChavanisMagali RibotCarole RosierClément Sire — 2004

Banach Center Publications

We develop the analogy between self-gravitating Brownian particles and bacterial populations. In the high friction limit, the self-gravitating Brownian gas is described by the Smoluchowski-Poisson system. These equations can develop a self-similar collapse leading to a finite time singularity. Coincidentally, the Smoluchowski-Poisson system corresponds to a simplified version of the Keller-Segel model of bacterial populations. In this biological context, it describes the chemotactic aggregation...

Page 1

Download Results (CSV)