Weighted estimates for the Riemann-Liouville operators with variable limits.
Extremal coefficient properties of Pick functions are proved. Even coefficients of analytic univalent functions f with |f(z)| < M, |z| < 1, are bounded by the corresponding coefficients of the Pick functions for large M. This proves a conjecture of Jakubowski. Moreover, it is shown that the Pick functions are not extremal for a similar problem for odd coefficients.
Page 1