Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Sliding subspace design based on linear matrix inequalities

In this work, an alternative for sliding surface design based on linear and bilinear matrix inequalities is proposed. The methodology applies for reduced and integral sliding mode control, both continuous- and discrete-time; it takes advantage of the Finsler's lemma to provide a greater degree of freedom than existing approaches for sliding subspace design. The sliding surfaces thus constructed are systematically found via convex optimization techniques, which are efficiently implemented in commercially...

A practical solution to implement nonlinear output regulation via dynamic mappings

This paper presents a novel error-feedback practical solution for real-time implementation of nonlinear output regulation. Sufficient and necessary conditions for both state- and error-feedback output regulation have been established for linear and nonlinear systems several decades ago. In their most general form, these solutions require solving a set of nonlinear partial differential equations, which may be hard or even impossible to solve analytically. In recent years, a methodology for dynamic...

Page 1

Download Results (CSV)