Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

On the diophantine equation x 2 = y p + 2 k z p

Samir Siksek — 2003

Journal de théorie des nombres de Bordeaux

We attack the equation of the title using a Frey curve, Ribet’s level-lowering theorem and a method due to Darmon and Merel. We are able to determine all the solutions in pairwise coprime integers x , y , z if p 7 is prime and k 2 . From this we deduce some results about special cases of this equation that have been studied in the literature. In particular, we are able to combine our result with previous results of Arif and Abu Muriefah, and those of Cohn to obtain a complete solution for the equation x 2 + 2 k = y n for...

The Brauer–Manin obstruction for curves having split Jacobians

Samir Siksek — 2004

Journal de Théorie des Nombres de Bordeaux

Let X 𝒜 be a non-constant morphism from a curve X to an abelian variety 𝒜 , all defined over a number field k . Suppose that X is a counterexample to the Hasse principle. We give sufficient conditions for the failure of the Hasse principle on X to be accounted for by the Brauer–Manin obstruction. These sufficiency conditions are slightly stronger than assuming that 𝒜 ( k ) and Ш ( 𝒜 / k ) are finite.

Diophantine equations after Fermat’s last theorem

Samir Siksek — 2009

Journal de Théorie des Nombres de Bordeaux

These are expository notes that accompany my talk at the 25th Journées Arithmétiques, July 2–6, 2007, Edinburgh, Scotland. I aim to shed light on the following two questions: Given a Diophantine equation, what information can be obtained by following the strategy of Wiles’ proof of Fermat’s Last Theorem? ...

Perfect powers expressible as sums of two fifth or seventh powers

Sander R. DahmenSamir Siksek — 2014

Acta Arithmetica

We show that the generalized Fermat equations with signatures (5,5,7), (5,5,19), and (7,7,5) (and unit coefficients) have no non-trivial primitive integer solutions. Assuming GRH, we also prove the non-existence of non-trivial primitive integer solutions for the signatures (5,5,11), (5,5,13), and (7,7,11). The main ingredients for obtaining our results are descent techniques, the method of Chabauty-Coleman, and the modular approach to Diophantine equations.

Superelliptic equations arising from sums of consecutive powers

Michael A. BennettVandita PatelSamir Siksek — 2016

Acta Arithmetica

Using only elementary arguments, Cassels solved the Diophantine equation (x-1)³ + x³ + (x+1)³ = z² (with x, z ∈ ℤ). The generalization ( x - 1 ) k + x k + ( x + 1 ) k = z n (with x, z, n ∈ ℤ and n ≥ 2) was considered by Zhongfeng Zhang who solved it for k ∈ 2,3,4 using Frey-Hellegouarch curves and their corresponding Galois representations. In this paper, by employing some sophisticated refinements of this approach, we show that the only solutions for k = 5 have x = z = 0, and that there are no solutions for k = 6. The chief innovation...

Almost powers in the Lucas sequence

Yann BugeaudFlorian LucaMaurice MignotteSamir Siksek — 2008

Journal de Théorie des Nombres de Bordeaux

The famous problem of determining all perfect powers in the Fibonacci sequence ( F n ) n 0 and in the Lucas sequence ( L n ) n 0 has recently been resolved []. The proofs of those results combine modular techniques from Wiles’ proof of Fermat’s Last Theorem with classical techniques from Baker’s theory and Diophantine approximation. In this paper, we solve the Diophantine equations L n = q a y p , with a > 0 and p 2 , for all primes q < 1087 and indeed for all but 13 primes q < 10 6 . Here the strategy of [] is not sufficient due to the sizes of the...

Page 1

Download Results (CSV)