Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium

Gloria FaccanoniSamuel KokhGrégoire Allaire — 2012

ESAIM: Mathematical Modelling and Numerical Analysis

In the present work we investigate the numerical simulation of liquid-vapor phase change in compressible flows. Each phase is modeled as a compressible fluid equipped with its own equation of state (EOS). We suppose that inter-phase equilibrium processes in the medium operate at a short time-scale compared to the other physical phenomena such as convection or thermal diffusion. This assumption provides an implicit definition of an equilibrium EOS...

Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium

Gloria FaccanoniSamuel KokhGrégoire Allaire — 2012

ESAIM: Mathematical Modelling and Numerical Analysis

In the present work we investigate the numerical simulation of liquid-vapor phase change in compressible flows. Each phase is modeled as a compressible fluid equipped with its own equation of state (EOS). We suppose that inter-phase equilibrium processes in the medium operate at a short time-scale compared to the other physical phenomena such as convection or thermal diffusion. This assumption provides an implicit definition of an equilibrium EOS...

An anti-diffusive Lagrange-Remap scheme for multi-material compressible flows with an arbitrary number of components

Marie Billaud FriessSamuel Kokh — 2012

ESAIM: Proceedings

We propose a method dedicated to the simulation of interface flows involving an arbitrary number of compressible components. Our task is two-fold: we first introduce a -component flow model that generalizes the two-material five-equation model of [2,3]. Then, we present a discretization strategy by means of a Lagrange-Remap [8,10] approach following the lines of [5,7,12]. The projection step involves an anti-dissipative mechanism derived from [11,12]. This feature allows to prevent the numerical...

A second order anti-diffusive Lagrange-remap scheme for two-component flows

We build a non-dissipative second order algorithm for the approximate resolution of the one-dimensional Euler system of compressible gas dynamics with two components. The considered model was proposed in [1]. The algorithm is based on [8] which deals with a non-dissipative first order resolution in Lagrange-remap formalism. In the present paper we describe, in the same framework, an algorithm that is second order accurate in time and space, and that...

Page 1

Download Results (CSV)