Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

A combinatorial approach to singularities of normal surfaces

Sandro Manfredini — 2003

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper we study generic coverings of 2 branched over a curve s.t. the total space is a normal analytic surface, in terms of a graph representing the monodromy of the covering, called monodromy graph. A complete description of the monodromy graphs and of the local fundamental groups is found in case the branch curve is { x n = y m } (with n m ) and the degree of the cover is equal to n or n - 1 .

On the Configuration Spaces of Grassmannian Manifolds

Sandro ManfrediniSimona Settepanella — 2014

Annales de la faculté des sciences de Toulouse Mathématiques

Let h i ( k , n ) be the i -th ordered configuration space of all distinct points H 1 , ... , H h in the Grassmannian G r ( k , n ) of k -dimensional subspaces of n , whose sum is a subspace of dimension i . We prove that h i ( k , n ) is (when non empty) a complex submanifold of G r ( k , n ) h of dimension i ( n - i ) + h k ( i - k ) and its fundamental group is trivial if i = m i n ( n , h k ) , h k n and n > 2 and equal to the braid group of the sphere P 1 if n = 2 . Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. k = n - 1 .

Page 1

Download Results (CSV)