### The deficiency of entire functions with Fejér gaps

We say that an entire function $f\left(z\right)={\sum}_{k=0}{a}_{k}{z}^{{n}_{k}}\phantom{\rule{3.33333pt}{0ex}}(0={n}_{0}\<{n}_{1}\<{n}_{2}\<...)$ has Fejér gaps if ${\sum}_{k=1}^{\infty}1/{n}_{k}\<\infty .$ The main result of this paper is as follows: An entire function with Fejér gaps has no finite deficient value.