Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Caractérisation d'un ensemble généralisant l'ensemble des nombres de Pisot

Toufik Zaïmi — 1998

Acta Arithmetica

1. Introduction. Soient K un corps de nombres et θ un entier algébrique de module > 1 et de polynôme minimal Irr(θ,K,z) sur K. Alors θ est dit K-nombre de Pisot si pour tout plongement σ de K dans ℂ le polynôme σIrr(θ,K,z) possède une unique racine de module > 1 et aucune racine de module 1. Ces nombres ont été définis par A. M. Bergé et J. Martinet [2]. Comme dans [2], on représente un K-nombre de Pisot θ dans l’algèbre A = r × r , où (r₁,r₂) désigne la signature du corps K, par la suite ( θ σ ) σ de ses...

The cubics which are differences of two conjugates of an algebraic integer

Toufik Zaimi — 2005

Journal de Théorie des Nombres de Bordeaux

We show that a cubic algebraic integer over a number field K , with zero trace is a difference of two conjugates over K of an algebraic integer. We also prove that if N is a normal cubic extension of the field of rational numbers, then every integer of N with zero trace is a difference of two conjugates of an integer of N if and only if the 3 - adic valuation of the discriminant of N is not 4 .

On an approximation property of Pisot numbers II

Toufik Zaïmi — 2004

Journal de Théorie des Nombres de Bordeaux

Let q be a complex number, m be a positive rational integer and l m ( q ) = inf { P ( q ) , P m [ X ] , P ( q ) 0 } , where m [ X ] denotes the set of polynomials with rational integer coefficients of absolute value m . We determine in this note the maximum of the quantities l m ( q ) when q runs through the interval ] m , m + 1 [ . We also show that if q is a non-real number of modulus > 1 , then q is a complex Pisot number if and only if l m ( q ) > 0 for all m .

Commentaires sur quelques résultats sur les nombres de Pisot

Toufik Zaimi — 2010

Journal de Théorie des Nombres de Bordeaux

Soit θ un nombre réel, avec θ > 1 , et soit A [ θ ] l’ensemble des nombres P ( θ ) pour P décrivant les polynômes à coefficients dans { 0 , 1 , . . . , [ θ ] } . En utilisant des résultats d’Yves Meyer sur les ensembles harmonieux, on montre que θ est un nombre de Pisot si et seulement si l’ensemble A [ θ ] ( - A [ θ ] ) est un ensemble de Meyer, et on déduit quelques résultats déjà prouvés par Y. Bugeaud ou P. Erdös et V. Komornik, sur le spectre des nombres de Pisot. Les mêmes outils permettent aussi de montrer que pour ε ] 0 , 1 ] , les ε -nombres de Pisot appartenant...

Comments on the height reducing property

Shigeki AkiyamaToufik Zaimi — 2013

Open Mathematics

A complex number α is said to satisfy the height reducing property if there is a finite subset, say F, of the ring ℤ of the rational integers such that ℤ[α] = F[α]. This property has been considered by several authors, especially in contexts related to self affine tilings and expansions of real numbers in non-integer bases. We prove that a number satisfying the height reducing property, is an algebraic number whose conjugates, over the field of the rationals, are all of modulus one, or all of modulus...

Comments on the fractional parts of Pisot numbers

Toufik ZaïmiMounia SelatniaHanifa Zekraoui — 2015

Archivum Mathematicum

Let L ( θ , λ ) be the set of limit points of the fractional parts { λ θ n } , n = 0 , 1 , 2 , , where θ is a Pisot number and λ ( θ ) . Using a description of L ( θ , λ ) , due to Dubickas, we show that there is a sequence ( λ n ) n 0 of elements of ( θ ) such that Card ( L ( θ , λ n ) ) < Card ( L ( θ , λ n + 1 ) ) , n 0 . Also, we prove that the fractional parts of Pisot numbers, with a fixed degree greater than 1, are dense in the unit interval.

Page 1

Download Results (CSV)