Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Functional a posteriori error estimates for incremental models in elasto-plasticity

Sergey RepinJan Valdman — 2009

Open Mathematics

We consider incremental problem arising in elasto-plastic models with isotropic hardening. Our goal is to derive computable and guaranteed bounds of the difference between the exact solution and any function in the admissible (energy) class of the problem considered. Such estimates are obtained by an advanced version of the variational approach earlier used for linear boundary-value problems and nonlinear variational problems with convex functionals [24, 30]. They do no contain mesh-dependent constants...

Verification of functional a posteriori error estimates for obstacle problem in 2D

Petr HarasimJan Valdman — 2014

Kybernetika

We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value...

Verification of functional a posteriori error estimates for obstacle problem in 1D

Petr HarasimJan Valdman — 2013

Kybernetika

We verify functional a posteriori error estimate for obstacle problem proposed by Repin. Simplification into 1D allows for the construction of a nonlinear benchmark for which an exact solution of the obstacle problem can be derived. Quality of a numerical approximation obtained by the finite element method is compared with the exact solution and the error of approximation is bounded from above by a majorant error estimate. The sharpness of the majorant error estimate is discussed.

Page 1

Download Results (CSV)