### A short proof of a theorem of Kano and Yu on factors in regular graphs.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Back to Simple Search
# Advanced Search

Let k ≥ 2 be an integer. A function f: V(G) → −1, 1 defined on the vertex set V(G) of a graph G is a signed k-independence function if the sum of its function values over any closed neighborhood is at most k − 1. That is, Σx∈N[v] f(x) ≤ k − 1 for every v ∈ V(G), where N[v] consists of v and every vertex adjacent to v. The weight of a signed k-independence function f is w(f) = Σv∈V(G) f(v). The maximum weight w(f), taken over all signed k-independence functions f on G, is the signed k-independence...

Let G be a graph with vertex set V (G), and let f : V (G) → {−1, 1} be a two-valued function. If k ≥ 1 is an integer and Σx∈N(v) f(x) ≥ k for each v ∈ V (G), where N(v) is the neighborhood of v, then f is a signed total k-dominating function on G. A set {f1, f2, . . . , fd} of distinct signed total k-dominating functions on G with the property that Σdi=1 fi(x) ≤ k for each x ∈ V (G), is called a signed total (k, k)-dominating family (of functions) on G. The maximum number of functions in a signed...

Let G be a finite and simple graph with vertex set V (G), and let f V (G) → {−1, 1} be a two-valued function. If ∑x∈N|v| f(x) ≤ 1 for each v ∈ V (G), where N[v] is the closed neighborhood of v, then f is a signed 2-independence function on G. The weight of a signed 2-independence function f is w(f) =∑v∈V (G) f(v). The maximum of weights w(f), taken over all signed 2-independence functions f on G, is the signed 2-independence number α2s(G) of G. In this work, we mainly present upper bounds on α2s(G),...

Let D be a finite and simple digraph with the vertex set V(D), and let f:V(D) → -1,1 be a two-valued function. If ${\sum}_{x\in N\xaf\left[v\right]}f\left(x\right)\ge 1$ for each v ∈ V(D), where N¯[v] consists of v and all vertices of D from which arcs go into v, then f is a signed dominating function on D. The sum f(V(D)) is called the weight w(f) of f. The minimum of weights w(f), taken over all signed dominating functions f on D, is the signed domination number ${\gamma}_{S}\left(D\right)$ of D. A set $f\u2081,f\u2082,...,{f}_{d}$ of signed dominating functions on D with the property that ${\sum}_{i=1}^{d}{f}_{i}\left(x\right)\le 1$ for each...

We consider finite graphs G with vertex set V(G). For a subset S ⊆ V(G), we define by G[S] the subgraph induced by S. By n(G) = |V(G) | and δ(G) we denote the order and the minimum degree of G, respectively. Let k be a positive integer. A subset S ⊆ V(G) is a connected global offensive k-alliance of the connected graph G, if G[S] is connected and |N(v) ∩ S | ≥ |N(v) -S | + k for every vertex v ∈ V(G) -S, where N(v) is the neighborhood of v. The connected global offensive k-alliance number $\gamma {\u2092}^{k,c}\left(G\right)$ is the...

Let $G$ be a graph with vertex set $V\left(G\right)$, and let $k\ge 1$ be an integer. A subset $D\subseteq V\left(G\right)$ is called a if every vertex $v\in V\left(G\right)-D$ has at least $k$ neighbors in $D$. The $k$-domination number ${\gamma}_{k}\left(G\right)$ of $G$ is the minimum cardinality of a $k$-dominating set in $G$. If $G$ is a graph with minimum degree $\delta \left(G\right)\ge k+1$, then we prove that $${\gamma}_{k+1}\left(G\right)\le \frac{\left|V\left(G\right)\right|+{\gamma}_{k}\left(G\right)}{2}.$$ In addition, we present a characterization of a special class of graphs attaining equality in this inequality.

Let k ≥ 1 be an integer. A signed total Roman k-dominating function on a graph G is a function f : V (G) → {−1, 1, 2} such that Ʃu2N(v) f(u) ≥ k for every v ∈ V (G), where N(v) is the neighborhood of v, and every vertex u ∈ V (G) for which f(u) = −1 is adjacent to at least one vertex w for which f(w) = 2. A set {f1, f2, . . . , fd} of distinct signed total Roman k-dominating functions on G with the property that Ʃdi=1 fi(v) ≤ k for each v ∈ V (G), is called a signed total Roman k-dominating family...

Let D be a finite and simple digraph with vertex set V (D). A signed total Roman dominating function (STRDF) on a digraph D is a function f : V (D) → {−1, 1, 2} satisfying the conditions that (i) ∑x∈N−(v) f(x) ≥ 1 for each v ∈ V (D), where N−(v) consists of all vertices of D from which arcs go into v, and (ii) every vertex u for which f(u) = −1 has an inner neighbor v for which f(v) = 2. The weight of an STRDF f is w(f) = ∑v∈V (D) f(v). The signed total Roman domination number γstR(D) of D is the...

A perfect independent set $I$ of a graph $G$ is defined to be an independent set with the property that any vertex not in $I$ has at least two neighbors in $I$. For a nonnegative integer $k$, a subset $I$ of the vertex set $V\left(G\right)$ of a graph $G$ is said to be $k$-independent, if $I$ is independent and every independent subset ${I}^{\text{'}}$ of $G$ with $|{I}^{\text{'}}|\ge |I|-(k-1)$ is a subset of $I$. A set $I$ of vertices of $G$ is a super $k$-independent set of $G$ if $I$ is $k$-independent in the graph $G[I,V(G)-I]$, where $G[I,V(G)-I]$ is the bipartite graph obtained from $G$ by deleting all edges...

Let ir(G) and γ(G) be the irredundance number and domination number of a graph G, respectively. The number of vertices and leaves of a graph G are denoted by n(G) and n₁(G). If T is a tree, then Lemańska [4] presented in 2004 the sharp lower bound γ(T) ≥ (n(T) + 2 - n₁(T))/3. In this paper we prove ir(T) ≥ (n(T) + 2 - n₁(T))/3. for an arbitrary tree T. Since γ(T) ≥ ir(T) is always valid, this inequality is an extension and improvement of Lemańska's result. ...

Let G be a simple graph, and let p be a positive integer. A subset D ⊆ V(G) is a p-dominating set of the graph G, if every vertex v ∈ V(G)-D is adjacent with at least p vertices of D. The p-domination number γₚ(G) is the minimum cardinality among the p-dominating sets of G. Note that the 1-domination number γ₁(G) is the usual domination number γ(G). If G is a nontrivial connected block graph, then we show that γ₂(G) ≥ γ(G)+1, and we characterize all connected block graphs with...

**Page 1**
Next