Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

A multilevel preconditioner for the mortar method for nonconforming finite element

Talal RahmanXuejun Xu — 2009

ESAIM: Mathematical Modelling and Numerical Analysis

A multilevel preconditioner based on the abstract framework of the auxiliary space method, is developed for the mortar method for the nonconforming finite element or the lowest order Crouzeix-Raviart finite element on nonmatching grids. It is shown that the proposed preconditioner is quasi-optimal in the sense that the condition number of the preconditioned system is independent of the mesh size, and depends only quadratically on the number of refinement levels. Some numerical...

Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation

Huangxin ChenRonald H. W. HoppeXuejun Xu — 2013

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal...

On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations

Xuejun XuC. O. ChowS. H. Lui — 2005

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, a Dirichlet-Neumann substructuring domain decomposition method is presented for a finite element approximation to the nonlinear Navier-Stokes equations. It is shown that the Dirichlet-Neumann domain decomposition sequence converges geometrically to the true solution provided the Reynolds number is sufficiently small. In this method, subdomain problems are linear. Other version where the subdomain problems are linear Stokes problems is also presented.

Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation

Huangxin ChenRonald H.W. HoppeXuejun Xu — 2012

ESAIM: Mathematical Modelling and Numerical Analysis

For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec’s first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss–Seidel type which are performed only on basis functions associated with newly created edges/nodal...

On nonoverlapping domain decomposition methods for the incompressible Navier-Stokes equations

Xuejun XuC. O. ChowS. H. Lui — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, a Dirichlet-Neumann substructuring domain decomposition method is presented for a finite element approximation to the nonlinear Navier-Stokes equations. It is shown that the Dirichlet-Neumann domain decomposition sequence converges geometrically to the true solution provided the Reynolds number is sufficiently small. In this method, subdomain problems are linear. Other version where the subdomain problems are linear Stokes problems is also presented.

Page 1

Download Results (CSV)