Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Introduction to Diophantine Approximation

Yasushige Watase — 2015

Formalized Mathematics

In this article we formalize some results of Diophantine approximation, i.e. the approximation of an irrational number by rationals. A typical example is finding an integer solution (x, y) of the inequality |xθ − y| ≤ 1/x, where 0 is a real number. First, we formalize some lemmas about continued fractions. Then we prove that the inequality has infinitely many solutions by continued fractions. Finally, we formalize Dirichlet’s proof (1842) of existence of the solution [12], [1].

Lagrange’s Four-Square Theorem

Yasushige Watase — 2014

Formalized Mathematics

This article provides a formalized proof of the so-called “the four-square theorem”, namely any natural number can be expressed by a sum of four squares, which was proved by Lagrange in 1770. An informal proof of the theorem can be found in the number theory literature, e.g. in [14], [1] or [23]. This theorem is item #19 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.

Algebraic Numbers

Yasushige Watase — 2016

Formalized Mathematics

This article provides definitions and examples upon an integral element of unital commutative rings. An algebraic number is also treated as consequence of a concept of “integral”. Definitions for an integral closure, an algebraic integer and a transcendental numbers [14], [1], [10] and [7] are included as well. As an application of an algebraic number, this article includes a formal proof of a ring extension of rational number field ℚ induced by substitution of an algebraic number to the polynomial...

On L 1 Space Formed by Real-Valued Partial Functions

Yasushige WataseNoboru EndouYasunari Shidama — 2008

Formalized Mathematics

This article contains some definitions and properties refering to function spaces formed by partial functions defined over a measurable space. We formalized a function space, the so-called L1 space and proved that the space turns out to be a normed space. The formalization of a real function space was given in [16]. The set of all function forms additive group. Here addition is defined by point-wise addition of two functions. However it is not true for partial functions. The set of partial functions...

Page 1

Download Results (CSV)